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Abstract. Ontology evaluation poses a number of difficult challenges re-
quiring different evaluation methodologies, particularly for a “dynamic
ontology” generated by a combination of automatic and semi-automatic
methods. We review evaluation methods that focus solely on syntactic
(formal) correctness, on the preservation of semantic structure, or on
pragmatic utility. We propose two novel methods for dynamic ontology
evaluation and describe the use of these methods for evaluating the dif-
ferent taxonomic representations that are generated at different times
or with different amounts of expert feedback. These methods are then
applied to the Indiana Philosophy Ontology (InPhO), and used to guide
the ontology enrichment process.

Keywords: ontology evaluation, taxonomy, ontology population, dy-
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1 Introduction

The evaluation of domain ontologies that are generated by automated and semi-
automated methods presents an enduring challenge. A wide variety of evaluation
methods have been proposed; but it should not be assumed that one or even a
handful of evaluation methods will cover the needs of all applications. Ontology
evaluation is as multifaceted as the domains that ontology designers aspire to
model. Projects differ in the resources available for validation, such as a “gold
standard” ontology, measures of user satisfaction, explicitly stated assumptions
about the logical or semantic structure of the domain’s conceptualization, or a
textual corpus or dictionary whose fit to the ontology can be measured. They will
also differ in the goals of the evaluation – for instance, whether they aim to use
evaluation to select amongst a set of available ontologies or to tune their methods
of ontology design. Further, the methods will differ in the assumptions they make
about their subject domains – for no evaluation method is possible without
substantive normative assumptions as to the nature of the “best” ontology.

At the Indiana Philosophy Ontology (InPhO) project, we are developing
techniques to evaluate the taxonomic structures generated by machine reasoning
on expert feedback about automatically extracted statistical relationships from
our starting corpus, the Stanford Encyclopedia of Philosophy (SEP). InPhO
does not assume that a single, correct view of the discipline is possible, but



rather takes the pragmatic approach that some representation is better than no
representation at all [Buckner et al., 2010]. Evaluation allows us to quantify our
model and makes explicit the specific biases and assumptions underlying each
candidate taxonomy.

In this paper, we describe a pair of evaluation metrics we have found useful
for evaluating ontologies and our methods of ontology design. The volatility
score (section 4.1) measures the structural stability over the course of ontology
extension and evolution. The violation score (section 4.2) measures the semantic
fit between an ontology’s taxonomic structure and the distribution of terms in
an underlying text corpus.

Before diving into these methodologies, we will first situate them within the
broader evaluation literature (section 2). Then we will describe the InPhO in
further detail, along with the raw materials we will be evaluating (section 3).
After this, we explore each of the two new measures, labeling their assumptions
and demonstrating their capacity to guide the process of ontology design.

2 State of the Art

Approaches to ontology evaluation are heavily dependent on the positions taken
towards ontology structure and design. Different assumptions underlying these
positions are often left implicit and this has led to a tangled web of conflict-
ing opinions in the literature. However, Gangemi, Catenacci, Ciaramita and
Lehmann (2006) provide an excellent conceptual scaffolding for use in detan-
gling the web by establishing three categories of evaluation techniques:

– Structural evaluation inspects the logical rigor and consistency of an on-
tology’s encoding scheme, typically as a directed graph (digraph) of taxo-
nomic and non-taxonomic relations. Structural evaluations are a measure
of syntactic correctness. A few examples of structural evaluation include
the OntoClean system [Guarino and Welty, 2004] and Gómez-Pérez’s (1999)
paradigm of correctness, consistency and completeness, which was extended
by Fahad & Qadir (2008). Our proposed volatility score (Section 4.1) is a
structural evaluation of consistency in an ontology.

– Functional evaluation measures the suitability of the ontology as a repre-
sentation of the target domain. Many functional evaluations follow a “gold
standard” approach, in which the candidate ontology is compared to another
work deemed a good representation of the target domain (e.g. Dellschaft &
Staab (2008) and Maedche & Staab (2002)). Another approach is to com-
pare the candidate ontology to a corpus from which terms and relations are
extracted [Brewster et al., 2004]. Our proposed violation score (Section 4.2)
is a corpus-based functional evaluation of semantic ontological fit.

– Usability evaluation examines the pragmatics of an ontology’s metadata
and annotation by focusing on recognition, efficiency (computational and/or
economic), and interfacing. The recognition level emerges from complete
documentation and effective access schemes. The efficency level deals with



proper division of ontological resources, and proper annotation for each. The
interfacing level is limited by Gangemi et al. (2006) to the examination of
inline annotations for interface design, but these are not essential properties.
One chief measure of usability is compliance to standards such as OWL and
RDFa. Several frameworks for social usability evaluation have been proposed
by Supekar (2004) and Gómez-Pérez (in Staab, 2004). ONTOMETRIC is
an attempt to codify the various factors in usability evaluation by detailing
160 characteristics of an ontology and then weighting these factors using
semi-automatic decision-making procedures [Lozano-Tello and Gómez-Pérez,
2004].

These three paradigms of evaluation are realized in different evaluation con-
texts, as identified by Brank, Mladenic and Grobelnik (2005):

– Applied – For functional and usability evaluation, using the ontology to
power an experimental task can provide valuable feedback about suitability
and interoperability. Applied approaches require access to experts trained
in the target domain and/or ontology design. Velardi, Navigli, Cucchiarelli,
and Neri’s OntoLearn system (2005) utilizes this type of applied evalua-
tion metric. Porzel and Malaka (2005) also use this approach within speech
recognition classification.

– Social – Methods for usability evaluation proposed by Lozano-Tello and
Gómez-Pérez (2004), Supekar (2004), and Noy (in Staab, 2004) for networks
of peer-reviewed ontologies, in a similar manner to online shopping reviews.
Most social evaluation revolves around the ontology selection task. These
evaluations involve a purely qualitative assessment and may be prone to
wide variation.

– Gold standard – As mentioned above, the gold standard approach com-
pares the candidate ontologies to a fixed representation judged to be a good
representation [Maedche and Staab, 2002, Dellschaft and Staab, 2008]. These
approaches draw strength from the trainability of the automatic methods
against a static target, but the possibility of over-training of automated and
semi-automated methods for ontology population means that the methods
may not generalize well.

– Corpus-based – Approaches such as those used by Brewster, Alani, Das-
mahapatra, and Wilks (2004) calculate the “ontological fit” by identifying
the proportion of terms that overlap between the ontology and the corpus.
This is a particularly well-suited measure for evaluating ontology learning
algorithms. Our methods expand this measurement approach to cover term
relations through both the violation and volatility measures.

This collection of evaluation paradigms and contextual backdrops allows us
finally to consider the type of information content being evaluated. A “compu-
tational ontology”, such as the InPhO, is a formally-encoded specification of the
concepts and a collection of directed taxonomic and non-taxonomic relations
between them [Buckner et al., 2010, Gruber, 1995, Noy and McGuinness, 2001].
When evaluating information content, we must be careful to delineate those



which are node-centric (focusing on concepts) from those which are edge-centric
(focusing on relations). Many authors [Maedche and Staab, 2002, Guarino and
Welty, 2004, Brewster et al., 2004, Gómez-Pérez, 1999, Velardi et al., 2005] focus
upon node-centric techniques, asking “Are the terms specified representative of
the domain?” These investigate the lexical content of an ontology. However, the
semantic content of an ontology is not defined solely by the collection of terms
within it, but rather by the relations of these terms. Maedche & Staab (2002)
take this initial lexical evaluation and extend it to an edge-based approach which
measures the number of shared edges in two taxonomies. The proposed violation
and volatility scores (Section 4) are novel edge-based measures which address
the semantic content of an ontology by comparing them to statistics derived
from a relevant corpus as a proxy for domain knowledge. Additionally, these
scores can provide insight to the ontology design process by highlighting partic-
ular changes in domain content and measuring convergence towards a relatively
stable representation.

3 Our Dynamic Ontology

A wide variety of projects can benefit from the development of a computational
ontology of some subject domain. Ontology science has evolved in large part
to suit the needs of large projects in medicine, business, and the natural sci-
ences. These domains share a cluster of features: the underlying structures of
these domains have a relatively stable consensus, projects are amply funded,
and a primary goal is often to render interoperable large bodies of data. In
these projects, the best practices often require hiring so-called “double experts”
– knowledge modelers highly trained in both ontology design and the subject
domains – to produce a representation in the early stages of a project which is
optimally comprehensive and technically precise.

There is another cluster of applications, however, for which these practices
are not ideal. These involve projects with principles of open-access and domains
without the ample funding of the natural sciences. Additionally, ontologies for
domains in which our structural understanding is controversial or constantly
evolving and projects which utilize computational ontologies to enhance search
or navigation through asynchronously updated digital resources must account for
the dynamic nature of their resources – whether it is in the underlying corpus
or in the judgments of the experts providing feedback on domain structure. On
the positive side, these areas often have more opportunities to collect feedback
from users who are domain experts (but who lack expertise in ontology design).

For the latter type of project we have recommended an approach to design
which we call dynamic ontology. While a project in the former group properly
focuses the bulk of its design effort on the production of a single, optimally cor-
rect domain representation, the latter cluster is better served by treating the
domain representation as tentative and disposable, and directing its design ef-
forts towards automating as much of the design process as possible. Dynamic
ontology, broadly speaking, tries to take advantage of many data sources to



iteratively derive the most useful domain representation obtainable at the cur-
rent time. Two primary sources of data are domain experts and text corpora.
Domain experts provide abstract information about presently-held assumptions
and emergent trends within a field from a source, namely their own ideas, that
is hard to examine directly. Text corpora make it possible to quantify what is
meant by “domain” by providing a concrete encoding of the semantic space that
is available for empirical analysis, in contrast to the ill-defined abstraction of
“the domain is what the experts conceive of it as”. From both kinds of sources
many types of data may be gathered: statistical relationships among terms, feed-
back from domain experts, user search and navigation traces, existing metadata
relationships (e.g. cross-references or citations), and so on. As more data become
available and our understanding of the subject domain continues to evolve, the
domain representation will be be dynamically extended, edited, and improved.

In dynamic ontology, problems of validation loom especially large due to
the combination of heterogenous data sources. Each step in the design process
presents modelers with a panoply of choices for inconsistency mitigation – e.g.,
which sources of data to favor over others (e.g. statistical vs. user feedbck), how
to leverage user expertise to resolve disagreements, which reasoning methods to
use for population, and how much feedback to solicit. The automation of ontology
design is a field in its infancy, and very little is known about the optimal choices
to satisfy specific design goals. Additionally, dynamic ontologists might have
questions regarding representational stability. If the domain is itself in flux or
controversial, modelers might want to know if they have captured that change.
The quantity of feedback may also influence the convergence of a population
method to some stable representation. The development of precise metrics about
the relationship between an ontology and a domain may be useful in a answering
these questions.

The InPhO is a dynamic ontology which models the discipline of philosophy.
Our approach leverages expert knowledge by augmenting it with machine rea-
soning, greatly reducing the need for expensive “double experts”. The primary
source of text data and domain experts is the Stanford Encyclopedia of Philoso-
phy (SEP)1. With over 700,000 weekly article downloads, the SEP is the leading
digital humanities resource for philosophy. The corpus consists of over 1,200 ar-
ticles and 14.25 million words maintained by over 1,600 volunteer authors and
subject editors. The tremendous depth of the encyclopedia makes it impossible
for any one person to have expertise over the whole domain, necessitating the
creation of a useful organization scheme to provide better editorial control and
content accessibility. At the same time, the comprehensive richness of the SEP
makes it a reasonable proxy for the discipline of philosophy as a whole.

We begin with a small amount of manual ontology construction obtained
through collaboration with domain experts. A lexicon is established from SEP
article titles, Wikipedia philosophy categories, n-gram analysis and ad hoc addi-
tions by the InPhO curators. We then build on this framework using an iterative

1 http://plato.stanford.edu



Fig. 1. The InPhO Workflow

three-step process of data mining, feedback collection, and machine reasoning to
populate and enrich our representation of philosophy (see Figure 1 ).

First, the SEP is mined to create a co-occurrence graph consisting of several
statistical measures. For each term in our lexicon, information entropy is mea-
sured, which provides an estimate of relative generality. For each graph edge, we
calculate the J-measure, which provides an estimate of semantic similarity. From
these measures we are able to generate hypotheses about hypernym/hyponym
candidates for sets of terms in the corpus [Niepert et al., 2007]. Second, SEP au-
thors and other volunteers verify these hypotheses by answering questions about
relational hypotheses. This reduces the effect of any statistical anomalies which
emerge from the corpus. Finally, logic programming techniques are used to as-
semble these aggregated feedback facts into a final populated ontology [Niepert
et al., 2008]. This knowledge base can then be used to generate tools to assist the
authors, editors, and browsers of the SEP, through tools such as cross-reference
generation engine and context-aware semantic search.

As was mentioned in the introduction, our pragmatic approach recognizes the
likelihood that there is no single, correct view of the discipline. However, even
if other projects do not agree with our taxonomic projections, our statistical
data and expert evaluations may still be useful. By exposing our data from each
of the three steps through an easy-to-use API, we encourage other projects to
discover alternative ways to construct meaningful and useful representations of
the discipline. Additionally, by offering an open platform, we invite other projects
to contribute relevant data and expert feedback to improve the quality of the
service.

3.1 Raw Materials

In this section we describe the various components of our project which can be
exploited for ontology evaluation.

Structure The core of the InPhO is the taxonomic representation marked by
the isa relations between concepts. Concepts in the InPhO may be represented as
part of either class or instance relations. Classes are specified through the direct
isa hierarchy of the taxonomy (see below). Instances are established between a



concept and another concept which is part of the taxonomic structure. Semantic
crosslinks (hereafter, links) can be asserted between two classes to capture the
relatedness of ideas deemed mutually relevant by feedback or automatic methods.

Statistics The InPhO’s ontology population and extension techniques rely
upon an external corpus (the SEP) to generate hypotheses about similarity and
generality relationships. From this corpus we generate a co-occurrence graph
G = (V, E) in which each node represents a term in our set of keywords. An
edge between two nodes indicates that the terms co-occur at least once.

For each node, the information content (Shannon entropy) is calculated:

H(i) = p(i) log p(i) (1)

For each edge, the directed J-measure [Smyth and Goodman, 1992, Niepert et al.,
2007] and conditional entropy [Shannon, 1949] is calculated bidirectionally. The
conditional entropy calculates the information content of a directed edge i → j.
This is used as a measure of semantic distance between two terms:

H(j | i) = p(i, j) log
p(i)

p(i, j)
(2)

The J-measure calculates the interestingness of inducing the rule “Whenever
idea i is mentioned in a fragment of text, then idea j is mentioned as well”
[Niepert et al., 2007]. This is used as a measure of semantic similarity between
two terms:

f(i → j) =p(j | i) log
p(j | i)

p(j)

+ (1 − p(j | i)) log
1 − p(j | i)

1 − p(j)

(3)

J(i → j) = p(i)f(i → j) (4)

Methods The taxonomy itself is populated through the use of answer set pro-
gramming [Niepert et al., 2008]. A population method M(R, S, F ) is specified
by a set of rules R, a seed taxonomy S, and a set of expert feedback or statis-
tical hypotheses F . Changes in F allow us to measure the impact of groups of
expert feedback and to evaluate an ontology extension method. Proposed ruleset
changes can be evaluated by maintaining the same set of inputs while testing
variations in R. The seed taxonomy is used to reduce the computational com-
plexity of a methodology, and changes to this seed can be used to strengthen the
ontology design process. We currently have two years of data collected on nightly
repopulation of the published InPhO taxonomy, which is used for evaluation of
our ontology extension methods.



3.2 Our Challenges

As hinted above, our dynamic approach to ontology design presents several
unique challenges which require that appropriate validation methods be devel-
oped to address them. Specifically, there are a variety of different ways that
our answer set program could infer a final populated ontology from aggregate
expert feedback. For example, there are different ways of settling feedback in-
consistencies (e.g. by leveraging user expertise in various ways [Niepert et al.,
2008]), by checking for inconsistency between feedback facts (e.g. looking only at
directly asserted inconsistencies or by exploring transitivities to look for implied
inconsistencies), and by restricting the conditions in which an instance or link
relationship can be asserted (e.g. forbidding/permitting multiple classification,
forbidding linking to a node when already reachable by ancestry, etc.). It is dif-
ficult or impossible to decide which of these design choices is optimal a priori,
and some precise evaluation metric would be needed to determine which ruleset
variations tend to produce better results in certain circumstances.

Furthermore, our current methodology uses a manually-constructed seed tax-
onomy and populates this taxonomic structure through user feedback. Many
options are possible for this initial hand-coded structure, and different experts
would produce different conceptualizations; we might want a measure of which
basic conceptualization tends to produce representations which best fit the distri-
bution of terms in the SEP. More ambitiously, if we allow the answer set program
to use disjunctive branching rules with regards to instantiation (thus creating
multiple candidate ontologies from a single set of input), we could produce a
large space of possible ontologies consistent with user feedback and a general
theory of ontologies; the task would then be to rank these candidates according
to their suitability for our metadata goals. Again, a precise evaluation metric
which could be used to select the “best” ontology from this space is needed.

Another question concerns the amount of expert feedback needed before we
begin to see diminishing returns. For example, we can only collect a limited
amount of feedback from volunteer SEP authors and editors before the task
becomes onerous; as such, we want to prioritize the collection of feedback for
areas of the ontology which are currently underpopulated, or even pay some
domain experts to address such sparseness. To optimize efficiency, we would
want to estimate the number of feedback facts needed to reach a relatively stable
structure in that area.

Finally, given that philosophy is an evolving domain rich with controversies,
we might wonder how much our evolving representation of that domain captures
these debates as they unfold. One of the alluring applications of dynamic on-
tology is to archive versions of the ontology over time and study the evolution
of a discipline as it unfolds. This is doubly-relevant to our project, as both our
domain corpus (the asynchronously-edited SEP) and our subject discipline are
constantly evolving. The study of this controversy and the evolution resulting
from it could be greatly enhanced by using metrics to precisely characterize
change across multiple archived versions of the ontology.



4 OUR SCORES

By stressing the dynamic nature of philosophy, we do not mean to imply that the
sciences lack controversy, or that scientific ontologies do not need ways of man-
aging change. Nevertheless, whereas the sciences typically aim for empirically-
grounded consensus, the humanities often encourage interpretation, reinterpre-
tation, and pluralistic viewpoints. In this context, the construction of compu-
tational ontologies takes on a social character that makes an agreed-upon gold
standard unlikely, and makes individual variation of opinion between experts
a permanent feature of the context in which ontology evaluation takes place.
Because of the dynamic, social nature of the domain, we do not try to achieve
maximal correctness or stability of the InPhO’s taxonomy of philosophical con-
cepts in one step. But by iteratively gathering feedback, and improving the
measures by which the ontology fit to various corpora can be assessed, we can
hope to quantify the extent to which a stable representation can be constructed
despite controversy among users. Our volatility score is designed to provide such
a measure.

Many approaches to ontology evaluation, such as our volatility score, focus
solely on syntactic (formal) properties of ontologies. These methods provide
important techniques for assessing the quality of an ontology and its suitability
for computational applications, but stable, well-formed syntax is no guarantee
that semantic features of the domain have been accurately captured by the
formalism. By using the SEP as a proxy for the domain of philosophy, our
violation score exploits a large source of semantic information to provide an
additional estimate as to how well the formal features of our ontology correspond
to the rich source material of the SEP.

4.1 Volatility Score

Volatility measures the structural (in)stability of a set of ontologies or (deriva-
tively) an ontology population method.2 Many in the semantic web community
hold that domain ontologies are supposed to be authoritative descriptions of the
types of entities in a domain [Smith, 2003]. However, ontology development is
often an iterative process [Noy and McGuinness, 2001], especially in dynamic
ontology. The volatility score carries with it this assumption that a “final an-
swer” description will not respond to the metadata needs of a dynamic corpus
such as the SEP, Wikipedia, or WordNet. Additionally, a domain can undergo
wide paradigm shifts, dramatically changing its conceptual landscape [Kuhn,
1962]. The advent of new theories like quantum mechanics or new technolo-
gies like computers, for example, radically reshaped the conceptual landscape of
philosophy.

A volatility score provides a measure of the amount of change between two or
more different versions of a populated ontology. The score fixes the population
methodology (e.g. the answer set program), while varying the expert feedback,

2 We thank Uri Nodelman for early discussion of this idea.



depending on the assessment task. For current consensus assessment, we gen-
erate a population of ontologies using random samples of the expert feedback
available at a given time. This measure can help determine how much feedback to
solicit before seeing diminishing returns with regards to representational stabil-
ity. For ongoing controversy assessment, we generate a population of ontologies
using aggregate feedback from different times separated by varying intervals. In
the case of the InPhO, controversy assessment is measured using different ver-
sions of the populated ontology generated from nightly runs of the answer set
program.

Both assessment tasks share the same intuition that the aggregate volatil-
ity score should be increased by some amount each time the method “changes
its mind” about asserting some particular link in the ontology (e.g. an instance
switches from being asserted to not asserted under some class). For example,
consider the representation of an ongoing controversy over time: if behaviorism
is said to be highly related to philosophy of language but a handful of expert
evaluations indicate otherwise, our model would “change its mind” about as-
serting a link between behaviorism and philosophy of language. As other experts
choose sides and weigh in on the matter, the volatility continues to increase,
further pointing to an area of conflict.

Assumptions & Requirements Volatility, used to measure both current
consensus and ongoing controversy requires careful examination by domain ex-
perts to determine whether representational instability is due to undesirable
errors/omissions in feedback or the machine reasoning program, or whether it
instead properly highlights controversy within the field. This feedback again
avoids the need for expensive “double experts” trained in both the target do-
main and ontology design. Recommendations from the experts regarding errors
in the population methods can guide ontology designers to change the ontology
extension methods and evaluated against the old method. In the case of properly
highlighted controversies, this information could be used to inform research in
the field. In the case of the InPhO project, this could help facilitate analytic
metaphilosophy (see Section 6.1 of Buckner et al. (2010))).

Another concern with the violation score is that there are different circum-
stances which could lead instance of(P, Q) to switch from being asserted/non-
asserted. One way is for there to be a lack of any feedback facts relevant to
that instance which could lead to the assertion of an instance of relation (e.g.,
more specific(P, Q) and highly related(P, Q)); another is due to the resolution
of an inconsistency in feedback facts (e.g. in one ontology a connection is asserted
between P and Q due to a user’s feedback, but not asserted in another because of
contrary feedback from another user with a higher level of expertise). In order to
isolate these issues, we adopt a “conservative” approach to assessing volatility:
for any given pair of terms, we will only assess a volatility contribution across
the subset of ontologies where at least minimal raw materials are present for
asserting an instance of relationship. With this consideration, we would want
to normalize the volatility contribution such that an instance of fact asserted



25 times out of 50 relevant ontologies (i.e. ontologies generated from the relevant
raw materials) is more volatile than a instance of fact which shifted 10 times
out of 20 relevant ontologies (out of the 50 total generated). Consequently, no
violation is assessed for pairs of terms which never have the raw materials for
assertion across those random subsets of feedback.

eThere are two series of concerns with such a

Formalization The volatility measure treatss the entire population of data as
a “grab-bag” of raw materials (in the form of expert feedback) and inferred
instances. Chagnes in asserted instances are counted without considering tem-
poral order or duration. For a set of n ontologies generated from k feedback
facts, volatility measures the relative proportion of times instance of(P, Q) is
asserted vs. non-asserted. Thus, for any two terms P and Q, the basic formula
for assessing the contribution of that pair to the overall volatility score is

v(P, Q) = 1 −
|x − n

2
|

n
2

(5)

where x is the number of times that the instance of(P, Q) is asserted in the set
under consideration. By taking into account our conservative weighting score we
arrive at the formula

v′(P, Q) = 1 −
|x − m

2
|

m
2

m

n
(6)

where m is the number of input sets containing the raw materials to assert
instance of(P, Q). This equation reduces to

v′(P, Q) = 1 −
|x − m

2
|

n
2

(7)

and yields the following aggregate volatility measure:

volatility(z) =
1

count(P, Q)

∑

∀P,Q

v′(P, Q) (8)

Interpretation of Results The volatility score is intended as a metric to call
attention to significant structural changes in the ontology. The raw pairwise
volatility score can be used to target feedback solicitation so as to reduce the
uncertainty of the ontology population method. For concepts instantiated under
multiple classes, the volatility of each class-concept pair can indicate the need
to gather additional feedback for the given concepts or classes.

The score may be visualized in many different manners. We propose the
use of a heatmap (e.g. Figure 2) to highlight areas of disagreement for ongoing
controversy assessment. “Hotter” areas of the visualization indicate areas of
more persistent controversy, while white areas convey that there is widespread
agreement about the state of a particular instance assertion. Other alternatives
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Fig. 2. Heatmap showing terms with average pairwise volatility > 0.45

not explored here include a scatter plot of average term volatility for each term
X, Y in an instanceof(X, Y ) assertion, and a histogram of pairwise volatility,
highlighting the distribution of the ontology’s controversy and consensus.

Experimental Results Figure 2 shows a heatmap for the ongoing controversy
assessment task at the InPhO Project, using nightly data from October 23, 2008
to April 19, 2011. The heatmap has been filtered to a small selection of the
most volatile terms (average pairwise volatility: 0.45). This introspection draws
attention to several issues within the InPhO:

– Specificity – Many controversies show disagreement in the taxonomic depth
at which a term should appear. “Federalism” is a prime example of this, as
it is classified under “social and political philosophy” and “forms of govern-
ment” with moderate degrees of volatility. Both classifications are semanti-
cally appropriate, but consensus has not yet been reached as to where the
term should be placed.

– Meta-philosophy – As discussed in Buckner et al. (2010), ontology eval-
uation can be used to foster meta-studies in the target domain. This type
of insight is shown by the concept of “meaning”, which is classified under
two different parent categories. One shows that meaning is inherent to the



structure of the world itself, and therefore belonging in the realm of meta-
physics. The other holds meaning to be a function of language, and discussion
to fall within the philosophy of language. While many experts in the field
could point to this distinction quickly, the evaluation task has highlighted
the bifurcation quite simply.

– Union and Intersection Disambiguation – Some terms are controversial
as a result of polysemous concept labels. “Confirmation and induction” is
one such term, which is instantiated under “justification” and “’logic” with
high volatility. Additionally, terms such as “moral epistemology and moral
reasoning” find themselves at the intersection of two sections: “ethics” and
“epistemology”, with the answer set program flipping between the two.

Due to the size of the ontology, instability within these categories would
not be immediately obvious to its human curators and users without the aid of
software to measure such changes in asserted facts. We are currently working to
integrate the average concept volatility into our feedback collection mechanisms,
which then permits human expertise and effort to be brought to bear on the
specific controversies.

4.2 Violation Score

For a candidate taxonomy, we introduce a “violation score” that is computed
by assessing the degree to which its relative placement of terms diverges from
statistically generated expectations about those terms relative locations in se-
mantic space (as estimated by their corpus-derived similarity and relative gener-
ality measures). Similar to Dellschaft and Staab (2008), we consider violation on
both a local and the global level. For local violations we only look at parent-child
taxonomic relations. For the global violations, we look at the weighted pathwise
distance between two terms in a taxonomy.

Assumptions & Requirements One goal of ontology design is to produce a
representation which captures the semantic structure of a domain. In order to
have a concrete standard for evaluation, the violation score uses the distribution
of terms in corpus, e.g. a reference work in that domain, as a proxy for the do-
main itself. Evaluation may thus draw upon the statistical measures outlined in
Section 3.2.2. However, any metric relating an ontology’s taxonomic relations to
statistical measures carries with it implicit assumptions regarding the semantic
interpretation of the ontology’s structural properties, such as the interpretation
of edges, pathwise distance, or genealogical depth. In order for the representa-
tion to be useful in end user applications (such as visualization, semantic search,
and ontology-guided conceptual navigation), we consider several approaches to
interpreting ontological structure, which may be adopted with varying degrees
of strength:

– Topic neutrality – One might simply wish to regiment all of the vocabu-
lary in a common structure representing only the isa relationships that exist



among the various terms. The goal of such a taxonomy is simply to enforce
a hierarchical structure on all the terms in the language. According to this
approach, there is no implied semantic significance to the node depth (aka,
genealogical depth) or to path length between pairs of nodes beyond the
hierarchical semantics of the isa relation itself. For example, if English con-
tains more levels of classificatory terms for familiar animals than it does for
relatively unfamiliar organisms, a term such as “dog” may sit at a greater
depth in the taxonomy from the root node than terms for other organisms
that are similarly specific, but nothing of any semantic significance is implied
by this depth (or the distance between term nodes) beyond the existence of
the intervening terms in the language.

– Depth as generality – One might desire that all sibling nodes have ap-
proximately the same level of generality in the target domain, making node
depth (distance from the root node) semantically significant. On this view,
the terms dog (a species) and feline (a family) should not be at the same
depth, even if the domain or corpus contains the same number of lexical con-
cepts between dog and thing as between feline and thing. Here one expects
the entropy of terms at the same depth to be highly correlated.3

– Leaf specificity – One might desire that all leaf nodes in the structure
represent approximately the same grain of analysis. On this view, regardless
of node depth, leaves should have similar entropy. Thus, for example, if
hammerhead shark and golden retriever are both leaf nodes, leaf specificity
is violated if these terms are not similarly distributed across the corpus that
is standing proxy for the domain.

Choices among these desiderata are central to any argument for edge-based
taxonomic evaluation. This is especially true for gold standard approaches which
implicitly hold the relations of two candidate ontologies to be semantically equiv-
alent. Additionally, we suspect that most domains have asymmetric taxonomic
structures: subtrees of sibling nodes are not typically isomorphic to one another,
and this means that even within a given taxonomy, path length between nodes
and node depth may not have the same semantic significance.

In our comparison methods we assume that node depth is topic neutral – that
is, node depth bears little correlation to specificity or generality on a global level.
However, by definition, a child node should be more specific than its parent node.
Thus, we measure local violation by comparing the information content of the
parent and child nodes. When two terms are reversed in specificity we can count
this as a syntactic violation of the taxonomic structure. Additionally, we can
expect sibling instances to be closely related to one another and to their parent
node by statistical measures of semantic distance. An instance is in violation if
it is an outlier compared to the rest of its siblings.

3 Edge equality provides a special case of depth as generality. The latter requires
only that all edges at a given level represent the same semantic distance, whereas
edge equality also requires these distances to be consistent between the different
levels (e.g., the movement from a species to a genus represents the same conceptual
distance as that between an order and a class).



We propose that overall violation is an emergent property from these localized
semantic violations. These violations are each weighted by the magnitude of the
error (as measured by the difference in semantic distance), ensuring that an
ontology with several large mistakes will have greater violation than one with
many minute errors.

Formalization A generality violation (g-violation) occurs when two terms are
reversed in specificity (e.g., the statistics propose that connectionism is more
specific than cognitive science but the answer set asserts that cognitive science
is more specific). For two terms S and G, where S is more specific than G, we
hypothesize that the conditional entropy will be higher for for G given S than
for S given G.

H(G | S) > H(S | G) (9)

This makes intuitive sense if one considers the terms dog (S) and mammal
(G). The presence of the term dog will lend far more certainty to the appear-
ance of mammal than the other way around -- mentioning mammal is not very
predictive of dog.

If this inequality does not hold, a generality violation (g-violation) is mea-
sured:

gv(S, G) = H(S | G) − H(G | S) (10)

The mean of the g-violations is then taken to give the overall g-violation.

violationg(O) =
1

count(S, G)

∑

∀S,G

gv(S, G) (11)

A similarity violation (s-violation) occurs when an instance’s semantic sim-
ilarity to its parent class is an outlier compared to the rest of its siblings. For
example, the entity (ideas about) federalism has been observed under both (ideas
about) social and political philosophy and (ideas about) forms of government.
However, the siblings of federalism under forms of government are much closer
to their parent node, than those under social and political philosophy. Therefore,
a taxonomy asserting that federalism is an instance of social and political phi-
losophy will recieve higher violation than one in which federalism is an instance
of forms of government.

Semantic similarity can be measured using a variety of measures reviewed in
Jiang and Conrath (1997) and Resnik (1999). We use the measure presented in
Lin (1998):

sim(x1, x2) =
2 × log P (C)

log P (x1) + log P (x2)
(12)

Such that x1 and x2 are entities in the taxonomy, and C is the most specific
class which subsumes x1 and x2. As we are simply comparing an instance S to
its parent G, we can use:



sim(S, G) =
2 × log P (G)

log P (S) + log P (G)
(13)

The degree of s-violation can be determined by the standard score, which
normalizes the values by standard deviation:

sv(S, G) =
sim(S, G) − µ

σ
(14)

where x is the raw semantic distance, µ is the mean of the semantic dis-
tance to the parent of all sibling nodes and σ is the standard deviation of this
population. The final s-violation is calculated as the mean of s-violations.

violations(O) =
1

count(S, G)

∑

∀S,G

sv(S, G) (15)

Interpretation of Results The violation score is intended as way to select the
best representation of a given set of input parameters. In our methodology, the
violation score is used to test variations in ruleset changes or seed taxonomies.
This evaluation can be used throughout the ontology design process to per-
fect methodology. We have used violation to examine changes to the assertion
of semantic crosslinks and in the weighting of expert feedback obtained from
novice philosophers, undergraduate majors, graduate students, and professors of
philosophy.

Additionally, we are able to use the violation score to compare different
samples of expert feedback by using the same seed taxonomy and ruleset. The
changes in violation scores exposed a steady increase in taxonomic fit from
novices to undergraduates to graduate students, before a slight decrease with
experts who have published in the area. Further investigation of violations found
that our highest-level experts were more likely to go against the statistical pre-
diction in often useful ways. These observations reinforce the importance of our
general design strategy of leveraging human expertise against the computational
powers of machines. Violation scores may highlight areas which need expert at-
tention, but should not override expert judgement automatically. When compar-
ing different versions of the ruleset, we must carefully reason through whether
some particular ruleset change could be subtly biasing the representation towards
or against expert feedback (e.g., in the way it settles inconsistency between users
and experts).

Experimental Results Since deploying the initial version of our answer set
program (described in Niepert et al. (2008)), we discovered a number of possible
improvements, but could not be sure a priori which version of the ruleset would
produce better results. The violation score provides us with a way to compare
these options in terms of their suitability. We identified three binary parameters
along which our program can vary, and have compared the violation scores for



each possible combination (resulting in a 2x2x2 matrix). The three parameters
are briefly described under their abbreviated names below4.

– “plink” – Our original ruleset [Niepert et al., 2008] included non-taxonomic
“links” to allow reachability between entities which were semantically related
but which, for various reasons, could not be connected taxonomically. To
minimize unnecessary taxonomic relations, we added a rule (hereafter, the
“nins” rule) which blocked an instance X from being asserted as an instance
of a class Y if there was also evidence that X was an instance of class Z

and Y was possibly linked (“plink”ed) to Z (since in that case X would
already be reachable from Y via the Y → Z link). Unexpectedly, we found
that this occasionally produced an undesirable “reciprocal plink deadlock”
(see Figure 3): whenever links were possible from both Y → Z and Z → Y ,
the nins rule blocked X from being inferred as an instance of either Y or Z

(and thus X often became a taxonomic “orphan”). As such, we created a
second version of the program which added a “no plink” restriction to the
“nins” rule, preventing this reciprocal plink situation. The “plink” parameter
indicates that this restriction was added to the nins rule.

Fig. 3. The reciprocal plink problem

– “voting” – An important innovation of our project involves the stratifi-
cation of user feedback into different levels of self-reported expertise and
using this information in a two-step process to resolve feedback inconsisten-
cies. The first step in this process involves the application of a “voting filter”
which settles intra-strata feedback inconsistencies using a voting scheme and
can be completed as a preprocessing step before the answer set program is
run. The “voting” parameter indicates that this filter was used.

– “trans” – Much of the information on which our program operates is de-
rived from the transitivity of the “more general than”/“more specific than”
feedback predicates. The second step of our method for settling feedback
inconsistencies involves settling inter -strata inconsistencies, which is com-
pleted from within our ruleset. However, transitivities in feedback can be
computed either before or after these inter-strata inconsistencies are resolved
(the former resulting in many more inconsistencies requiring resolution). The
“trans” parameter thus indicates that this version of the ruleset computes
transitivities before (vs. after) our ruleset settles inter-strata inconsistencies.

4 The exact details of the answer set program can be found in Niepert et al. 2009,
but are unnecessary for the purposes of our discussion investivating the suitability
of different reasoning methods.



s-violation g-violation instances
all-in voting all-in voting all-in voting

current 0.8248 0.8214 -0.1125 -0.1170 417 456
plink 0.8111 0.8089 -0.1182 -0.1227 521 568
trans 0.8119 0.8094 -0.1133 -0.1168 452 491

plink, trans 0.8061 0.8031 -0.1153 -0.1188 502 546

Fig. 4. Violation score evaluations on the InPhO using feedback and corpus statistics
from July 24, 2010

Each modification was then compared to the current ruleset using both the
s-violation and g-violation metrics using corpus statistics and user evaluations
from July 24, 2010 (see Figure 4). The number of instances asserted is also in-
cluded. As we can clearly see, every proposed change decreased both violation
scores, with the best results provided by adopting all three changes5. The de-
crease in s-violation can be interpreted as the development of denser semantic
clusters subsumed under each class. The decrease in g-violation can be inter-
preted as movement towards greater stratification in the heirarchy. This is quan-
titative evidence that the principled design choices outlined above will provide
useful additions to the ontology enrichment process.

5 FUTURE WORK

With these methods of evaluating ontology structure and function in hand, along
with preliminary results on our limited feedback collection, we propose to con-
tinue these evaluation experiments as new feedback is rapidly collected from SEP
authors. These scores will allow us to pursue a long-desired use of our answer set
programming to infer a space of populated ontologies and select an optimal one
by ranking them according to violation scores. We can then see how consistent
ruleset selection is.

We might also ask how feedback from people with different levels of expertise
in philosophy affects the placement of terms in the InPhO. For instance, Eckert et
al. (2010) have already gathered feedback data from Amazon Mechanical Turk
(AMT) users and compared their responses to those of experts. Although we
know that as a whole they differ statistically from experts, we do not yet know
how much this matters to the structure that is eventually produced from those
feedback facts.

In this paper we have shown an analysis of ongoing controversy using the
volatility score. A full analysis of current consensus awaits the collection of suf-
ficient expert feedback to allow rigorous sampling. The integration of pairwise
volatility with our feedback collection methods should further this goal.

5 g-violation was lowest when adopting the plink and voting changes, but not trans.
However, the result with all three changes was second lowest.



6 CONCLUSIONS

In this paper we have proposed two methods for evaluating the structural and
functional aspects of a corpus-based dynamic ontology. Our work focuses on
the semantic evaluation of taxonomic relations, rather than the lexical evalua-
tion undertaken by Brewster et al. (2004) and Dellschaft & Staab (2008). The
violation score gives us a concrete measure of how well an ontology captures
the semantic similarity and generality relationships in a domain by examining
statistical measures on an underlying corpus. The volatility score exposes ar-
eas of high uncertainty within a particular ontology population method, which
can be used for many purposes, including current consensus assessment and on-
going controversy assessment, highlighting a dynamic ontology’s evolution. We
also have examined the considerations necessary to evaluate a taxonomy, and
demonstrated how these methods have been used to enhance the enrichment
process of the Indiana Philosophy Ontology Project through experiments on
ruleset variations, expert feedback stratification and stability.
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