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Abstract

Complex artificial life simulations can yield substantially dis-
tinct populations of agents corresponding to different adap-
tations to a common environment or specialized adaptations
to different environments. Here we show how a standard
clustering algorithm applied to the artificial genomes of such
agents can be used to discover and characterize these sub-
populations. As gene changes propagate throughout the pop-
ulation, new subpopulations are produced, which show up as
new clusters. Cluster centroids allow us to characterize these
different subpopulations and identify their distinct adaptation
mechanisms. We suggest these subpopulations may reason-
ably be thought of as species, even if the simulation soft-
ware allows interbreeding between members of the different
subpopulations, and provide evidence of both sympatric and
allopatric speciation in the Polyworld artificial life system.
Analyzing intra- and inter-cluster fecundity differences and
offspring production rates suggests that speciation is being
promoted by a combination of post-zygotic selection (lower
fitness of hybrid offspring) and pre-zygotic selection (assor-
tative mating), which may be fostered by reinforcement (the
Wallace effect).

Introduction
Artificial life simulations exhibit complex agent-based be-
haviors, which persist and evolve through genetic recombi-
nation and mutation. Unless explicit speciation is built into
the simulation, identifying emergent species in these simu-
lations is difficult, both theoretically and practically. Here
we demonstrate a technique for identifying subpopulations
of agents using a clustering algorithm to identify groups of
agents with shared genetic attributes. The resulting clusters
might reasonably be considered distinct species, and allow
us to identify some of the different adaptation mechanisms
adopted in the simulation. Examining the temporal distri-
bution of these clusters allows us to better understand the
evolutionary course of speciation and adaptation in our sim-
ulations, and may offer some insights into speciation in bio-
logical ecosystems.

Understanding speciation is one of the key problems in
biology. Much debate centers around the role of allopatric
(geographically isolated) vs sympatric (shared environment)
species divergence. The significance and driving forces

of sympatric speciation have been controversial since the
ideas were introduced by Wallace (1899) and championed
by Dobzhansky (1937). Disruptive selection (adaptation to
distinct fitness peaks) in combination with reinforcement
(the selection pressure that results from reduced fitness of
hybrids; aka the Wallace effect) leads to assortative mating
(a preference for related partners) thus providing a basis for
sympatric speciation. Despite the simplicity and attractive-
ness of these ideas, the so-called Modern Synthesis largely
discarded the idea of selective speciation, instead attributing
divergence to more readily observable geographic isolation
(Mayr and Provine, 1998), and a variety of models (reviewed
in (Kirkpatrick and Ravigné, 2001)) have led many to con-
clude that sympatric speciation, while possible, will only be
found under very limited circumstances (Felsenstein, 1981).
However, though the jury is still out, empirical evidence
for reinforcement driving sympatric speciation does exist
((Sætre et al., 1997; Ortiz-Barrientos et al., 2004; Silverton
et al., 2005) and others) and recent theoretical and modeling
work have suggested potential mechanisms (such as compe-
tition overwhelming selection towards a single method of re-
source utilization) for overcoming the perceived limitations
on sympatry (Dieckmann and Doebeli, 1999; Kondrashov
and Kondrashov, 1999; Van Doorn and Weissing, 2001). For
high-level reviews see (Butlin and Tregenza, 1997; Tregenza
and Butlin, 1999; Weissing et al., 2011). In this work, both
pre-zygotic (pre-mating) and post-zygotic (post-mating) se-
lection are observed, suggesting reinforcement may be play-
ing a role in our speciation events—both sympatric and al-
lopatric followed by population mixing.

In the life sciences clustering algorithms are applied in
many areas, including the analysis of clinical information,
phylogeny, genomics, and proteomics (Zhao and Karypis,
2005). Mallet (1995) proposed gene clustering as a preferred
method for the rigorous identification of biological species
(as opposed to taxonomic features). We seek to import these
concepts and tools from the realm of biology into our artifi-
cial life work to help us better understand the evolutionary
dynamics of our model ecosystem, though we believe there
may be some general principles that apply to both artificial



and natural ecosystems.
The use of gene clustering for speciation has been ex-

plored in genetic algorithms by Hocaoglu and Sanderson
(1995) and in computational ecosystems by Aspinall and
Gras (2010). The Aspinall and Gras predator-prey simulator
has some traits in common with ours, but defines two dis-
tinct agent classes which do not interbreed, and the cluster-
ing analysis is performed during the simulation and allowed
to control reproductive success, thus allowing it to drive the
speciation process. By contrast, there is no impact of cluster
membership or genetic distance on reproductive success in
the work reported here, and all gene clustering analysis is
performed post hoc, after a simulation has run its course.

Clustering algorithms (reviewed in Hartigan (1975);
Kaufman and Rousseeuw (2005)) rely upon two key ele-
ments: the distance function used to measure object simi-
larity and the algorithm used to partition the data. The dis-
tance function must account for the “curse of dimensional-
ity” (Bellman, 1957) intrinsic to high dimensional spaces in
general and evolutionary algorithms employing large, high-
dimensional genomes in particular. Clustering algorithms
with a pre-specified number of clusters—such as k-means
clustering (MacQueen, 1967)—though widely used, suffer
from the simple fact that the number of clusters may not be
known a priori.

Information theory (Shannon, 1948) allows us to partially
alleviate the curse of dimensionality. Through the process of
variation and selection those genetic dimensions which most
affect an agent’s fitness will be selected for and conserved,
thus exhibiting low entropy across the population of agents,
while those which are inconsequential will descend into a
random distribution. By weighting genetic dimensions with
certainty (i.e., 1 - entropy) those genetic features most sig-
nificant to the agents’ survival and reproduction will be em-
phasized during the partitioning into clusters, while spurious
proximity in the inconsequential dimensions is ignored.

Algorithmically, we have chosen to use the QT (Quality
Threshold) Clustering algorithm (Heyer et al., 1999; Scharl
and Leisch, 2006), which clusters based on a maximum
intra-cluster distance (diameter), rather than a set number
of clusters.

The Artificial Life Software
This research was carried out using Polyworld (Yaeger,
1994), a computational ecology with a long history, in which
populations of haploid agents evolve, each possessing a suite
of primitive behaviors (move, turn, eat, mate, attack, light,
focus) under continuous control of an Artificial Neural Net-
work (ANN) employing (in this case) discrete-time, firing-
rate neurons with synapses that adapt via Hebbian learning.
The wiring diagram of the ANN is encoded in the organ-
ism’s genome, via a statistical description of the number of
neural groups of excitatory and inhibitory neurons, synaptic
connection densities, regularity of connections, and learning

rates. The only epistatic interaction between genes derives
from the role played by the genes expressing the number
of neural groups and the number of neurons in each group in
controlling whether the corresponding inter-group and inter-
neuron connections are expressed. For a detailed discus-
sion of Polyworld’s genetic encoding scheme, see (Yaeger,
1994).

Input to the ANN consists of pixels from a rendering of
the scene from each agent’s point of view. Output from the
ANN consists of the aforementioned primitive behaviors.
For the simulation discussed here, there are 2,486 genes
devoted to specifying the neural topologies (but not synap-
tic weights) of ANNs with up to 217 neurons and 45,854
synaptic connections. The actual neuron count ranged from
14 to 163, with a mean of 48, and the synapse count
ranged from 46 to 9,034, with a mean of 656. A small
number of genes (8) characterize the agents’ simple mor-
phologies, metabolisms, and meta-genetics, in terms of size,
strength, maximum speed, fraction of energy contributed to
offspring, ID (green color component), mutation rate, num-
ber of crossover points, and lifespan. Thus there are 2,494
genes in all used in the clustering process.

All actions of the agents consume energy, so they must
replenish their energy levels by seeking out and consuming
food or by killing and eating other agents. Normally there
are also per-neuron and per-synapse energy costs, but for
consistency with some evolution-of-complexity experiments
these were disabled for the results reported here. Reproduc-
tion occurs when two collocated agents simultaneously ex-
press their mating behaviors.

The simulation is initially seeded with a uniform pop-
ulation of agents that have the minimum number of neu-
ral groups and a nearly minimal number of neurons and
synapses. While predisposed to some potentially benefi-
cial behaviors, such as running towards food (green) and
away from aggression (red; see (Yaeger, 1994) for details
on color use in Polyworld), these seed organisms are not a
viable species. I.e., without evolution they cannot sustain
their numbers through their reproductive behaviors and will
inevitably die out.

For these analyses the world was configured as in (Yaeger
et al., 2008), with two barriers running 90% of the depth of
the world, but left open for the remaining 10% of the world,
so populations are able to mix relatively easily, but not with
complete freedom. 80% of the food is grown in a patch oc-
cupying 40% of world depth at the open end of the barriers,
20% in a patch occcupying 10% of world depth at the closed
end of the barriers. This layout may be seen in Figure 1.

As simulations progress both the structural architecture of
the ANNs and the activation of every neuron at every time
step for every agent may be recorded, thus permitting in-
vestigation into evolutionary trends in network structure and
function (Yaeger et al., 2010). Agent genomes may also be
recorded, and these recorded genomes serve as the basis for



Figure 1: Polyworld simulation environment

the clustering analysis described here. Some genes exhibit
smooth, general trends over the course of the simulation, but
others demonstrate short, sharp changes that correspond to
temporal cluster boundaries, as will be discussed later.

The Clustering Algorithm
The clustering task can be divided into two subproblems:
the distance function used to measure object similarity and
the clustering algorithm used to partition objects. For the
distance function, we used entropy-weighted Euclidean dis-
tance over each agent’s genome. For the clustering algo-
rithm, we used a variation of the QT-Clust algorithm (Heyer
et al., 1999; Scharl and Leisch, 2006), with the addition of
a new algorithmic improvement to allow for multiple clus-
ter selection on each pass and a precalculation of point-wise
distances for greater efficiency.

The Distance Function

Genomic data in artificial life simulations are afflicted by
the curse of dimensionality (Bellman, 1957), and the current
Polyworld genome consists of nearly 2,500 genes! Fortu-
nately, the process of selection in evolutionary algorithms
gives a way to identify genes which are likely to differentiate
subpopulations. Genes with a high impact on agent fitness
will be selected for and conserved, while those which are in-
consequential will trend towards a random distribution. By
taking the information certainty (1 - Shannon Entropy) of
each gene, the relative importance of each dimension may
be used to weight the many dimensions:

H(g) = −
Ns∑
i=0

p(gi) log2(p(gi))

certainty(g) = 1−H(g)

where g is a specific gene, the gi are the gene values (states),
and Ns is the number of possible gene states. Probabilities
were calculated for 16 bins of 16 gene values, capturing the

full range of these 8-bit genes (0-255), over the entire pop-
ulation of 29,564 agents extent during the full evolutionary
simulation.

While each gene of the Polyworld genome is specified
by an 8-bit value, the full range of genetic values may not
be expressed over the course of a simulation. In comparing
genomic data, the difference along this distribution is more
important than the raw score. To address this issue when
calculating genetic distances between agents, we have nor-
malized the measure of each gene dimension, by calculating
the genes’ z-scores:

z(x) =
x− µ
σ

where x is the raw gene value, µ is the mean value of that
gene, and σ is the standard deviation of that gene’s values).

After normalizing gene values to produce gene z-scores,
distances are calculated between z-scores, weighting the rel-
ative importance of each gene by its certainty. Our dis-
tance metric is therefore the certainty-weighted squared-
Euclidean distance of z-scores:

dist(x, y) =

Ng∑
i=0

(wi(z(xi)− z(yi)))2

where x and y correspond to two agents and their genomes,
Ng is the total number of genes in the genome, wi is the
certainty calculated for each specific gene i, and z(xi) and
z(yi) are the z-scores of gene i in the genomes of agents x
and y.

The QT-Clust Algorithm

Clustering algorithms rely upon the fixation of one or more
variables: number of clusters, similarity of elements in the
cluster, or number of elements in each cluster. Effective
clusters should maximize inter-cluster distances, while mini-
mizing intra-cluster distances (cluster diameter). Traditional
k-nearest-neighbor approaches (MacQueen, 1967) require
the number of clusters to be specified a priori. Addition-
ally, these algorithms encounter the hubness phenomenon
in which a centroid may be a common nearest-neighbor
in Euclidean space, building large diameter clusters. This
phenomenon is exacerbated by high-dimensionality (Beyer
et al., 1999; Radovanović et al., 2010).

To avoid these issues, we have opted to use the QT-Clust
algorithm (Heyer et al., 1999; Scharl and Leisch, 2006),
which is a nearest-neighbor clustering approach fixing clus-
ter diameter (ε), rather than the number of clusters. This
algorithm is perticularly well suited for data discovery prob-
lems, such as gene analysis (the original use case). Adjust-
ment of the cluster diameter parameter provides a means of
controlling cluster fit that is both more intuitive and prac-
tical than algorithms requiring explicit specification of the
number of clusters. (E.g., we are unlikely to have chosen



Algorithm 1: QT-Clust
Input: G, ε
Output: Clusters

if |G| ≤ 1 then
output G

else
// Cluster building
foreach i ∈ G do

flag := TRUE; Ci := i;
while flag and Ci 6= G do

find j ∈ G−Ci : diameter(Ci ∪ j) is min;
if diameter(Ci ∪ j) > ε then

flag := FALSE
else

Ci = Ci ∪ j
// Cluster selection
C := C0...C|G|;
while |C| > 0 do

identify set P ∈ C with max cardinality;
G := G− P ;
C := X ∈ C : |X ∩ P | = 0;
output P ;

QT Clust(G, ε)

values of 8, 29, and 108 for the number of clusters we ended
up focusing our attention on, but specifying cluster diame-
ter in terms of standard deviations that produced these clus-
terings seemed reasonably natural.) The iterative approach
used by QT-Clust also avoids issues of hubness common
to nearest-neighbor clustering algorithms by creating an ε-
neighborhood graph around each agent. The largest of these
groupings is then selected and removed from the population
to be re-clustered, thus eliminating the effect of outliers and
hubs (Radovanović et al., 2010).

The algorithm has two stages. First, a cluster is built start-
ing with each agent within the population (G). The cluster
is built by adding the next closest agent to the cluster, un-
til a threshold (ε) of maximum distance is reached. Cluster
construction may be done in parallel for a significant speed
increase. Then, each of these clusters is passed through a fil-
tering step, which selects the largest candidate that does not
overlap with a previously selected cluster, until no viable
candidates remain. This multiple selection amortizes the
time complexity of the original QT-Clust algorithm, while
maintaining its quality control advantages. After filtering,
unclustered elements are then reclustered within the remain-
ing population until all elements are classified.

Results
We ran this algorithm on Polyworld simulation data con-
taining 29,564 agents (distributed over 30,000 time steps),
contained in 1.9GB of genomic data. Simulation parame-

ε 1.5 1.75 2 2.125 2.25 2.5 2.75
# clust 2063 750 108 29 8 3 3

Table 1: Resulting cluster counts for different ε thresholds

ters are identical to those presented in previous work on the
evolution of neural complexity (Yaeger et al., 2008). While
previous work has focused on general trends, combining the
results of multiple runs and applying standard tests of statis-
tical significance, here we wish to tease apart the dynamics
of a particular simulation, and we are interested in the de-
gree to which cluster analysis and a species/sub-population
perspective can inform the understanding of those dynam-
ics. We would expect the details of cluster/species forma-
tion to vary from run to run, even when nothing changes
but the pseudo-random number generator’s seed, and have
seen hints of such variation in previous work on complexity
trends.

For the discussion below, we define ε as a factor of the
sum of all certainty weightings:

ε(x) = x

Ng∑
i=0

wi

This sum is equivalent to the weighted distance between
two genomes which differ by 1 standard deviation on each
dimension, due to z-score normalization. Thresholds were
set between 1.5 and 3 times the sum of the certainty values,
at increments of .25.

Behavior Across Different Thresholds

Table 1 shows the number of clusters identified for varying
levels of ε. Figure 2a-c show the population of each cluster
over time for ε = 2.0, 2.125, 2.25. The progression from
a large diameter to a smaller diameter shows each cluster
splintering. Whether these show heirarchical clustering is a
question for further empirical study.

Temporal Trends in Clusters

Figure 2b shows that while the larger clusters tend to be re-
placed serially over time, other, smaller clusters emerge, co-
exist with one or more of the larger clusters for extended
periods of time, and are ultimately extinguished, suggest-
ing the emergence, persistence, and decline of subordinate
species. This also suggests we may be seeing reproductive
isolation of sub-populations, despite the fact that Polyworld
does not in any way inhibit cross-cluster reproduction. This
could be due to pre-zygotic, assortative mating preferences
(unpublished work suggests agents attend to both geneti-
cally and behaviorally determined color expressions) or to
post-zygotic disruptive selection effects in a Dobzhansky-
Muller manner—hybrid offpsring expressing neural archi-
tectures that are sub-optimal in themselves, or in combina-
tion with “physiological” characteristics that affect energy
requirements. We look at both possibilities below.
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Figure 2: Temporal trends in cluster populations for ε =
{2.0, 2.125, 2.25}, two high-certainty genes (size and internal-
neural-group count) exhibiting different selection behaviors, and
TSE complexity. Genes and complexity shown as population
means with standard deviation bands.

Temporal Neural Genetic
Size Start Peak End Complexity Size INGC

0 1062 0 78 3749 0.2445 133.6 35.1
1 2278 1311 4087 8441 0.3626 172.4 101.0
5 769 4408 6694 11585 0.3657 202.5 98.3
9 3983 5119 8772 17509 0.3058 224.7 62.3
16 205 9168 14722 20192 0.3563 221.3 106.3
17 767 8795 13813 27611 0.3257 215.8 77.1
21 16732 6394 20672 30000 0.2876 225.4 41.9
23 397 11487 28572 30000 0.2861 200.5 38.8
24 273 13207 26594 30000 0.2619 185.3 29.1
27 2202 15126 29565 30000 0.3114 222.0 45.7

Table 2: Raw data from QT-Clust with ε = 2.125. Shown are
the origin, peak, and extinction of each major cluster, the TSE
complexity, and mean values of the size and internal-neural-group-
count (INGC) genes. Gene values are in the raw 0–255 range.
Clusters with < 700 members appear in light gray. Clusters with
< 200 members are not shown.

For the larger clusters, from cluster populations alone we
cannot distinguish between roughly monotonic, anagenetic
(within lineage) changes and true cladogenetic (divergent)
speciation. However, long periods of temporal overlap dur-
ing transitions suggest we may be seeing true speciation in
large clusters as well, as distinct, new clusters emerge and
are simply more successful than either the short-lived small
clusters or the previous large cluster.

Temporal Trends in Genes

The use of clusters allows us to identify genetic differences
between different subpopulations, including temporal trends
in specific genes known to distinguish different subpopula-
tions. Figure 2d shows different selection patterns for two
high-certainty genes positioned below the cluster population
graphs to allow comparison of their temporal trends. Table 2
shows the corresponding raw data for all clusters with a pop-
ulation size greater than 200.

The size gene (certainty = 0.3515) shows a nearly
monotonic selection pattern. Only the initial seed popula-
tion has a relatively small size. By the time of the transition
from the second to the third major cluster, size has reached
the level at which it will plateau—around 220. By contrast,
the internal-neural-group-count gene (certainty = 0.2058)
shows a more variable selection pattern, which corresponds
to trends in neural complexity as discussed below. These
changes also correspond to cluster emergence and decline,
as discussed in Cluster Characterization.

Neural Complexity

Tononi-Sporns-Edelman neural complexity (TSE complex-
ity) (Tononi et al., 1994) gives an indication of the neural
structure and function for each agent. Figure 2e shows the
mean TSE complexity over time for the simulation being an-
alyzed. In a past study, complexity was shown to be highly
selected for only during periods of behavioral adaptation of
the agents to their environment (Yaeger, 2009), in keeping
with the tautology of evolutionary selection applying only
when the subject of selection confers an evolutionary ad-



Clusters children grandchildren child-rate grandchild-rate
Same 2.04 (0.02) 4.04 (0.05) 6.54 (0.06) 10.6 (0.2)
Diff 1.89 (0.00) 3.57 (0.03) 5.11 (0.12) 7.76 (0.3)

Table 3: Reproductive success—numbers of offspring from par-
ents of the same or different clusters and child-production rates per
1,000 contacts with agents from same or different clusters (stderr
in parens), using ε = 2.125.

vantage. The current results are in general agreement with
previous simulations, showing strong selection for complex-
ity in early populations during the period in which they are
evolving to adopt an Ideal Free Distribution (Fretwell and
Lucas, 1970; Fretwell, 1972) of agents to the heterogeneous
resources of the simulated environment, plateauing around
step 7500, and followed by a long stretch of relative stability
lasting for the rest of the simulation. However, we see here
a bump in complexity around t=15,000, unique to this par-
ticular simulation, that our clustering analysis reveals to be
the result of a corresponding bump in internal-neural-group
count deriving from the emergence and decline of a pair of
specific sub-populations (clusters 16 and 17).

Discussion and Conclusions

Whether discussing the larger clusters, that replaced each
other somewhat serially, or smaller clusters that represented
sub-populations coexistent with the larger populations, we
think it may be reasonable to conceive of these clusters as
species within our artificial simulation. Since the simulation
does not explicitly prevent interbreeding between clusters or
base reproductive success on genetic distance, perhaps they
should be considered proto-species, but the fall and rise of
sub-populations, with significantly different genetic makeup
from the dominant population, suggests a degree of speci-
ficity and persistence of species identity. Even the domi-
nant populations may demonstrate speciation and competi-
tion between species, given the degree to which they over-
lap in time; e.g., note in Figure 2b that the cluster rising to
dominance at the end of the run (light orange – cluster 27)
first appeared barely over half way through the simulation
(t=15,126) well before the previous dominating population
(light purple – cluster 21) had reached its peak population
(t=20,672). This occurs despite a relatively simple environ-
ment in which agents are free to mix and in which there
is only one kind of energy resource (two if you distinguish
between food that is grown and food derived from the car-
casses of agents that are killed).

As Mallet (1995) notes, “Clusters can remain distinct un-
der relatively high levels of gene flow provided there is
strong selection against intermediates; species will be main-
tained when selection balances gene flow.” Lacking geo-
graphic isolation, sympatric speciation is typically thought
to require disruptive selection to elicit distinct phenotypes
and genotypes, coupled with selection for assortative mat-
ing to elicit reproductive isolation.

If disruptive selection and poor hybrid fitness are play-
ing a role in balancing gene flow, we should see differences
in the fitness, as measured by fecundity, of offspring from
parents belonging to the same or to different clusters. To
investigate this hypothesis we examined the number of chil-
dren and the number of grandchildren produced by agents
born to parents from the same or from different clusters.
The left-hand columns of Table 3 summarize the results.
Though the differences are modest, the offspring of parents
from the same cluster produce more offspring than do the
offspring of parents from different clusters, and those off-
spring are themselves more fecund. The magnitude of the
differences are about 10x the standard error rates observed in
the population (shown in parentheses), thus there is at least
a modest post-zygotic selection pressure at work. Ampli-
fied across multiple generations it is easy to see how intra-
cluster breeders will outperform inter-cluster breeders and
produce ever more distinct sub-populations—species—even
sympatrically. This is basically the first half of Wallace and
Dobzhansky’s proposed route to sympatric speciation.

If reinforcement is producing pre-zygotic selection and
assortative mating, we should see differences in the rate at
which agents produce offspring when they come in contact
with agents from the same or different clusters. To inves-
tigate this possibility we examined the number of children
and grandchildren produced per contact with other agents
from the same or different clusters. For this analysis it is im-
portant to normalize birth rates by contact counts, since any
kind of temporal, behavioral, or geographical isolation can
and does significantly skew the number of potential repro-
ductive encounters between same and different clusters for
a given agent. The right-hand columns of Table 3 summa-
rize these results. Both the child- and grandchild-production
rates (per 1,000 contacts) are greater for encounters with
agents from the same cluster than for agents from a differ-
ent cluster. Here again, though the magnitude of the differ-
ences is small, they are roughly 10x the standard error rates
observed in the population. Thus there is at least a weak
pre-zygotic selection pressure at work.

Certain characteristics of the current simulated
environment—especially the partial barriers, that are a
holdover from previous experiments looking at the evo-
lution of complexity—make it difficult to entirely tease
apart sympatric vs allopatric speciation. In movies showing
cluster membership over time we see clusters emerge and
persist alongside existing clusters in a fully sympatric
fashion. But we also see evidence of allopatric speciation,
with new clusters emerging in and coming to dominate
one food patch before spreading to the other—in fact,
having difficulty invading the second food patch. So we
currently believe both forms of speciation are to be found
in these simulations. A sample movie can be found at:
http://informatics.indiana.edu/larryy/cluster movie.zip
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Figure 3: Means and standard error bars for the strength,
size, mate-energy-fraction (MEF) and internal-neural-group-count
(INGC) genes, along with neural complexity, for clusters with more
than 700 agents, using ε = 2.125.

Cluster Characterization

Clustered sub-populations can be characterized by their re-
spective cluster centroid. Figure 3 provides a set of cluster
fingerprints, summarizing the raw data in Table 2 for clus-
ters of ε = 2.125 (showing only the major clusters, with
populations > 700). Specific evolutionary trends can be
correlated to the rise and fall of particular species. The
increase in size is readily apparent, along with a general
decline in mate energy fraction and strength, and a varia-
tion in the internal-neural-group count. The earlier clusters
1 and 5 explore larger neural structures, achieving higher
complexity. All dominant clusters exhibit a trend towards
reduced energy consumption (low mate energy fraction and
strength) and increased energy capacity (large size). Clus-
ter 17 shows an exploratory population with slightly higher
internal-neural-group count and neural complexity, coupled
with a reduced emphasis on energy conservation, as evi-
denced by an increased strength and mate energy fraction,
and slightly smaller size. This exploratory population is
present in the middle third of the simulation, emerging out
of the dominant cluster 21, but having only limited success,
and, together with cluster 16, is responsible for the bump
in internal-neural-group count and complexity as previously
discussed.

Future Directions
One direction is to apply these analysis methods to simula-
tions with simpler environments, in order to eliminate the
possibility of allopatric speciation. We are also investigat-
ing methods from the evolutionary biology literature, such
as “heat maps” of genetic diversity versus geological origins
of parents, that might help us quantify degrees of sympatric
vs allopatric speciation. An analysis of the temporal his-
tory of the fecundity and child-production rates discussed

here might help distinguish pre-zygotic and post-zygotic se-
lection and clarify the role of reinforcement in producing
assortative mating.

Alternative clustering algorithms are also of interest. In-
formation theory-based algorithms, such as that of Gokcay
and Principe (2002), which maximizes cross-entropy be-
tween clusters, look particularly attractive. Alternatively,
adopting a rival-penalization method, such as the k*-means
algorithm (Cheung, 2002), may provide a better metric for
cluster selection than cluster diameter. It might also be
interesting to adapt the heirarchical clustering scheme of
Aspinall and Gras (2010), regardless of whether we adopt
their practice of allowing clusters to modulate reproduc-
tive success. Such a comparison would provide insight into
whether or not varying the thresholds of QT-Clust is suggest-
ing heirarchies of sub-populations, as hinted by Figure 2.

Any of these clustering methods, including the current
one, would allow us to evaluate the effectiveness of a “mis-
cegenation function”, which establishes a probability of re-
productive success that is inversely proportional to genetic
distance between potential mates, that was long ago built
into Polyworld, but which has never been explored to any
substantial degree.

With the existing data, a study of the geographic locality
of the origin and spread of each species may yield informa-
tion about environmental effects on selection and degrees of
sympatric vs allopatric speciation. This may provide the-
oretical insights into a common real-world speciation sce-
nario in which initial allopatric (regional) divergence is fol-
lowed by sympatric divergence, as seen in Darwin’s Finches
and other taxa (Huber et al., 2007). We would also like to ap-
ply these methods to simulations with clearly differentiated
niches that are geographically either overlapping or isolated,
to distinguish and quantify the relative effects of niche spe-
cialization vs geographic isolation.
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