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Abstract: Ontology evaluation poses a number of difficult challenges requiring different evaluation method-
ologies, particularly for a “dynamic ontology” representing a complex set of concepts and generated
by a combination of automatic and semi-automatic methods. We review evaluation methods that
focus solely on syntactic (formal) correctness, on the preservation of semantic structure, or on
pragmatic utility. We propose two novel methods for dynamic ontology evaluation and describe
the use of these methods for evaluating the different taxonomic representations that are generated
at different times or with different amounts of expert feedback. The proposed “volatility” and
“violation” scores represent an attempt to merge syntactic and semantic considerations. Volatility
calculates the stability of the methods for ontology generation and extension. Violation measures
the degree of “ontological fit” to a text corpus representative of the domain. Combined, they
support estimation of convergence towards a stable representation of the domain. No method of
evaluation can avoid making substantive normative assumptions about what constitutes “correct”
representation, but rendering those assumptions explicit can help with the decision about which
methods are appropriate for selecting amongst a set of available ontologies or for tuning the design
of methods used to generate a hierarchically organized representation of a domain.

1 INTRODUCTION

The evaluation of domain ontologies that are gen-
erated by automated and semi-automated meth-
ods presents an enduring challenge. A wide va-
riety of evaluation methods have been proposed;
but it should not be assumed that one or even
a handful of evaluation methods will cover the
needs of all applications. Ontology evaluation is
as multifaceted as the domains that ontology de-
signers aspire to model. Projects differ in the
resources available for validation, such as a “gold
standard” ontology, measures of user satisfaction,
explicitly stated assumptions about the logical or
semantic structure of the domain’s conceptual-
ization, or a textual corpus or dictionary whose
fit to the ontology can be measured. They will
also differ in the goals of the evaluation – for in-
stance, whether they aim to use evaluation to

select amongst a set of available ontologies or
to tune their methods of ontology design. Fur-
ther, the methods will differ in the assumptions
they make about their subject domains – for no
evaluation method is possible without substan-
tive normative assumptions as to the nature of
the “right” ontology.

At the Indiana Philosophy Ontology (InPhO)
project1, we are developing techniques to evaluate
the taxonomic structures generated by machine
reasoning on expert feedback about automatically
extracted statistical relationships from our start-
ing corpus, the Stanford Encyclopedia of Philos-
ophy (SEP). InPhO does not assume that a sin-
gle, correct view of the discipline is possible, but
rather takes the pragmatic approach that some
representation is better than no representation
at all (Buckner et al., 2010). Evaluation allows

1http://inpho.cogs.indiana.edu



us to quantify our model and makes explicit the
specific biases and assumptions underlying each
candidate taxonomy.

In this paper, we describe a pair of evalua-
tion metrics we have found useful for evaluating
ontologies and our methods of ontology design.
These metrics are designed for projects which
have access to large textual corpora, and which
expect the structure of their ontology to fit the
distribution of terms in this corpus. The volatil-
ity score (section 4.1) measures the structural sta-
bility over the course of ontology extension and
evolution. The violation score (section 4.2) mea-
sures the semantic fit between an ontology’s tax-
onomic structure and the distribution of terms in
an underlying text corpus.

Before diving into these methodologies, we
will first situate them within the broader evalua-
tion literature (section 2). Then we will describe
the InPhO in further detail, along with the raw
materials we will be evaluating (section 3). After
this, we explore each of the two new measures, la-
beling their assumptions and demonstrating their
capacity to guide the process of ontology design.

2 STATE OF THE ART

Approaches to ontology evaluation are heavily de-
pendent on the positions taken towards ontology
structure and design. Different assumptions un-
derlying these positions are often left implicit and
this has led to a tangled web of conflicting opin-
ions in the literature. However, Gangemi, Cate-
nacci, Ciaramita and Lehmann (2006) provide an
excellent conceptual scaffolding for use in detan-
gling the web by establishing three categories of
evaluation techniques:

• Structural evaluation inspects the logical
rigor and consistency of an ontology’s encod-
ing scheme, typically as a directed graph (di-
graph) of taxonomic and non-taxonomic re-
lations. Structural evaluations are a mea-
sure of syntactic correctness. A few exam-
ples of structural evaluation include the Onto-
Clean system (Guarino and Welty, 2004) and
Gómez-Pérez’s (1999) paradigm of correct-
ness, consistency and completeness, which was
extended by Fahad & Qadir (2008). Our pro-
posed volatility score (Section 4.1) is a struc-
tural evaluation of semantic consistency dur-
ing successive stages of a dynamic ontology’s
iterative extension and evolution.

• Functional evaluation measures the suit-
ability of the ontology as a representation of
the target domain. Many functional evalua-
tions follow a “gold standard” approach, in
which the candidate ontology is compared to
another work deemed a good representation
of the target domain (e.g. Dellschaft & Staab
(2008) and Maedche & Staab (2002)). An-
other approach is to compare the candidate
ontology to a corpus from which terms and re-
lations are extracted (Brewster et al., 2004).
Our proposed violation score (Section 4.2) is a
corpus-based functional evaluation of seman-
tic ontological fit.

• Usability evaluation examines the prag-
matics of an ontology’s metadata and anno-
tation by focusing on recognition, efficiency
(computational and/or economic), and inter-
facing. The recognition level emerges from
complete documentation and effective access
schemes. The efficency level deals with proper
division of ontological resources, and proper
annotation for each. The interfacing level is
limited by Gangemi et al. (2006) to the ex-
amination of inline annotations for interface
design, but these are not essential properties.
One chief measure of usability is compliance
to standards such as OWL and RDFa. Sev-
eral frameworks for social usability evaluation
have been proposed by Supekar (2004) and
Gómez-Pérez (in Staab, 2004). ONTOMET-
RIC is an attempt to codify the various factors
in usability evaluation by detailing 160 char-
acteristics of an ontology and then weighting
these factors using semi-automatic decision-
making procedures (Lozano-Tello and Gómez-
Pérez, 2004).

These three paradigms of evaluation are real-
ized in different evaluation contexts, as identified
by Brank, Mladenic and Grobelnik (2005):

• Applied – For functional and usability eval-
uation, using the ontology to power an ex-
perimental task can provide valuable feed-
back about suitability and interoperability.
Applied approaches require access to experts
trained in the target domain and/or ontol-
ogy design. Velardi, Navigli, Cucchiarelli, and
Neri’s OntoLearn system (2005) utilizes this
type of applied evaluation metric. Porzel and
Malaka (2005) also use this approach within
speech recognition classification.

• Social – Methods for usability evaluation
proposed by Lozano-Tello and Gómez-Pérez



(2004), Supekar (2004), and Noy (in Staab,
2004) for networks of peer-reviewed ontolo-
gies, in a similar manner to online shopping re-
views. Most social evaluation revolves around
the ontology selection task. These evaluations
involve a purely qualitative assessment and
may be prone to wide variation.

• Gold standard – As mentioned above, the
gold standard approach compares the can-
didate ontologies to a fixed representation
judged to be a good representation (Maedche
and Staab, 2002; Dellschaft and Staab, 2008).
These approaches draw strength from the
trainability of the automatic methods against
a static target, but the possibility of over-
training of automated and semi-automated
methods for ontology population means that
the methods may not generalize well.

• Corpus-based – Approaches such as those
used by Brewster, Alani, Dasmahapatra, and
Wilks (2004) calculate the “ontological fit”
by identifying the proportion of terms that
overlap between the ontology and the corpus.
This is a particularly well-suited measure for
evaluating ontology learning algorithms. Our
methods expand this measurement approach
to cover term relations through both the vio-
lation and volatility measures.
This collection of evaluation paradigms and

contextual backdrops allows us finally to consider
the type of information content being evaluated.
A “computational ontology”, such as the InPhO,
is a formally-encoded specification of the con-
cepts and a collection of directed taxonomic and
non-taxonomic relations between them (Buckner
et al., 2010; Gruber, 1995; Noy and McGuinness,
2001). When evaluating information content, we
must be careful to delineate those which are node-
centric (focusing on concepts) from those which
are edge-centric (focusing on relations). Many
authors (Maedche and Staab, 2002; Guarino and
Welty, 2004; Brewster et al., 2004; Gómez-Pérez,
1999; Velardi et al., 2005) focus upon node-centric
techniques, asking “Are the terms specified repre-
sentative of the domain?” These investigate the
lexical content of an ontology. However, the se-
mantic content of an ontology is not defined solely
by the collection of terms within it, but rather by
the relations of these terms. Maedche & Staab
(2002) take this initial lexical evaluation and ex-
tend it to an edge-based approach which measures
the number of shared edges in two taxonomies.
The proposed violation and volatility scores (Sec-
tion 4) are novel edge-based measures which ad-

dress the semantic content of an ontology by com-
paring them to statistics derived from a relevant
corpus as a proxy for domain knowledge. Addi-
tionally, these scores can provide insight to the
ontology design process by showing the contro-
versy of domain content and convergence towards
a relatively stable structure over time.

3 OUR DYNAMIC ONTOLOGY

A wide variety of projects can benefit from the de-
velopment of a computational ontology of some
subject domain. Ontology science has evolved
in large part to suit the needs of large projects
in medicine, business, and the natural sciences.
These domains share a cluster of features: the
underlying structures of these domains have a
relatively stable consensus, projects are amply
funded, and a primary goal is often to render
interoperable large bodies of data. In these
projects, the best practices often require hiring
so-called “double experts” – knowledge modelers
highly trained in both ontology design and the
subject domains – to produce a representation in
the early stages of a project which is optimally
comprehensive and technically precise.

There is another cluster of applications, how-
ever, for which these practices are not ideal.
These involve projects with principles of open-
access and domains without the ample funding of
the natural sciences. Additionally, ontologies for
domains in which our structural understanding is
controversial or constantly evolving, and projects
which utilize computational ontologies to enhance
search or navigation through asynchronously up-
dated digital resources must account for the dy-
namic nature of their resources – whether it is in
the underlying corpus or in the judgments of the
experts providing feedback on domain structure.
On the positive side, these areas often have more
opportunities to collect feedback from users who
are domain experts but lack expertise in ontology
design.

For the latter type of project we have recom-
mended an approach to design which we call dy-
namic ontology. While a project in the former
group properly focuses the bulk of its design ef-
fort on the production of a single, optimally cor-
rect domain representation, the latter cluster is
better served by treating the domain represen-
tation as tentative and disposable, and directing
its design efforts towards automating as much of
the design process as possible. Dynamic ontology,



broadly speaking, tries to take advantage of many
data sources to iteratively derive the most useful
domain representation obtainable at the current
time. Two primary sources of data are domain
experts and text corpora. Domain experts pro-
vide abstract information about presently-held
assumptions and emergent trends within a field
from a source, namely their own ideas, that is
hard to examine directly. Text corpora make it
possible to quantify what is meant by “domain”
by providing a concrete encoding of the semantic
space that is available for empirical analysis, in
contrast to the ill-defined abstraction of “the do-
main is what the experts conceive of it as”. From
both kinds of sources many types of data may be
gathered: statistical relationships among terms,
feedback from domain experts, user search and
navigation traces, existing metadata relationships
(e.g. cross-references or citations), and so on. As
more data become available and our understand-
ing of the subject domain continues to evolve, the
domain representation will be be dynamically ex-
tended, edited, and improved.

In dynamic ontology, problems of validation
loom especially large due to the combination of
heterogenous data sources. Each step in the de-
sign process presents modelers with a panoply of
choices for inconsistency mitigation – e.g., which
sources of data to favor over others, how to settle
feedback disagreements, which reasoning meth-
ods to use for population, how much feedback to
solicit, and how to weigh user feedback against
statistical suggestions. The automation of on-
tology design is a field in its infancy, and very
little is known about the optimal choices to sat-
isfy specific design goals. Additionally, dynamic
ontologists might have questions regarding repre-
sentational stability. If the domain is itself in flux
or controversial, modelers might want to know if
they have captured that change. The quantity of
feedback may also influence the convergence of a
population method to some stable representation.
The development of precise metrics about the re-
lationship between an ontology and a domain may
be useful in a answering these questions.

The InPhO is a dynamic ontology which mod-
els the discipline of philosophy. Our approach
leverages expert knowledge by augmenting it with
machine reasoning, greatly reducing the need for
expensive “double experts”. The primary source
of text data and domain experts is the Stanford
Encyclopedia of Philosophy (SEP)2. With over
700,000 weekly article downloads, the SEP is the

2http://plato.stanford.edu

leading digital humanities resource for philoso-
phy. The corpus consists of over 1,200 articles and
14.25 million words maintained by over 1,600 vol-
unteer authors and subject editors. The tremen-
dous depth of the encyclopedia makes it impos-
sible for any one person to have expertise over
the whole domain, necessitating the creation of a
useful organization scheme to provide better ed-
itorial control and content accessibility. At the
same time, the comprehensive richness of the SEP
makes it a reasonable proxy for the discipline of
philosophy as a whole.

We begin with a small amount of manual on-
tology construction obtained through collabora-
tion with domain experts. A lexicon is established
from SEP article titles, Wikipedia philosophy cat-
egories, n-gram analysis and ad hoc additions by
the InPhO curators. We then build on this frame-
work using an iterative three-step process of data
mining, feedback collection, and machine reason-
ing to populate and enrich our representation of
philosophy (see Figure 1).

First, the SEP is mined to create a co-
occurrence graph consisting of several statistical
measures. For each term in our lexicon, informa-
tion entropy is measured, which provides an esti-
mate of relative generality. For each graph edge,
we calculate the J-measure, which provides an es-
timate of semantic similarity. From these mea-
sures we are able to generate hypotheses about
hypernym/hyponym candidates for sets of terms
in the corpus (Niepert et al., 2007). Second,
SEP authors and other volunteers verify these
hypotheses by answering questions about rela-
tional hypotheses. This reduces the effect of any
statistical anomalies which emerge from the cor-
pus. Finally, logic programming techniques are
used to assemble these aggregated feedback facts
into a final populated ontology (Niepert et al.,
2008). This knowledge base can then be used to
generate tools to assist the authors, editors, and
browsers of the SEP, through tools such as cross-
reference generation engine and context-aware se-
mantic search.

As was mentioned in the introduction, our
pragmatic approach recognizes the likelihood that
there is no single, correct view of the discipline.
However, even if other projects do not agree with
our taxonomic projections, our statistical data
and expert evaluations may still be useful. By
exposing our data from each of the three steps
through an easy-to-use API, we encourage other
projects to discover alternative ways to construct
meaningful and useful representations of the dis-



Figure 1: The InPhO Workflow

cipline. Additionally, by offering an open plat-
form, we invite other projects to contribute rel-
evant data and expert feedback to improve the
quality of the service.

3.1 Raw Materials

In this section we describe the various compo-
nents of our project which can be exploited for
ontology evaluation.

3.1.1 Structure

The core of the InPhO is the taxonomic repre-
sentation marked by the isa relations between
concepts. Concepts in the InPhO may be rep-
resented as part of either class or instance rela-
tions. Classes are specified through the direct isa
hierarchy of the taxonomy (see below). Instances
are established between a concept and another
concept which is part of the taxonomic structure.
Semantic crosslinks (hereafter, links) can be as-
serted between two classes to capture the related-
ness of ideas deemed mutually relevant by feed-
back or automatic methods.

3.1.2 Statistics

The InPhO’s ontology population and extension
techniques rely upon an external corpus (the
SEP) to generate hypotheses about similarity and
generality relationships. From this corpus we gen-
erate a co-occurrence graph G = (V,E) in which
each node represents a term in our set of key-
words. An edge between two nodes indicates that
the terms co-occur at least once.

For each node, the information content (Shan-
non entropy) is calculated:

H(i) = p(i) log p(i) (1)

For each edge, the directed J-measure (Smyth and
Goodman, 1992; Niepert et al., 2007) and condi-
tional entropy (Shannon, 1949) is calculated bidi-
rectionally. The conditional entropy calculates
the information content of a directed edge i→ j.
This is used as a measure of semantic distance
between two terms:

H(j | i) = p(i, j) log
p(i)
p(i, j)

(2)

The J-measure calculates the interestingness
of inducing the rule “Whenever idea i is men-
tioned in a fragment of text, then idea j is men-
tioned as well” (Niepert et al., 2007). This is used
as a measure of semantic similarity between two
terms:

f(i→ j) =p(j | i) log
p(j | i)
p(j)

+ (1− p(j | i)) log
1− p(j | i)

1− p(j)

(3)

J(i→ j) = p(i)f(i→ j) (4)

3.1.3 Methods

The taxonomy itself is populated through the
use of answer set programming (Niepert et al.,
2008). A population method M(R,S, F ) is spec-
ified by a set of rules R, a seed taxonomy S, and
a set of expert feedback or statistical hypothe-
ses F . Changes in F allow us to measure the
impact of groups of expert feedback and to eval-
uate an ontology extension method. Proposed
ruleset changes can be evaluated by maintain-
ing the same set of inputs while testing variations
in R. The seed taxonomy is used to reduce the
computational complexity of a methodology, and
changes to this seed can be used to strengthen the
ontology design process. We currently have two



years of data collected on nightly repopulation of
the published InPhO taxonomy, which is used for
evaluation of our ontology extension methods.

3.2 Our Challenges

As hinted above, our dynamic approach to on-
tology design presents several unique challenges
which require that appropriate validation meth-
ods be developed to address them. Specifically,
there are a variety of different ways that our an-
swer set program could infer a final populated
ontology from aggregate expert feedback. For ex-
ample, there are different ways of settling feed-
back inconsistencies (e.g. by leveraging user ex-
pertise in various ways (Niepert et al., 2008)), by
checking for inconsistency between feedback facts
(e.g. looking only at directly asserted inconsisten-
cies or by exploring transitivities to look for im-
plied inconsistencies), and by restricting the con-
ditions in which an instance or link relationship
can be asserted (e.g. forbidding/permitting mul-
tiple classification, forbidding linking to a node
when already reachable by ancestry, etc.). It is
difficult or impossible to decide which of these de-
sign choices is optimal a priori, and some precise
evaluation metric would be needed to determine
which ruleset variations tend to produce better
results in certain circumstances.

Furthermore, our current methodology uses a
manually-constructed seed taxonomy and popu-
lates this taxonomic structure through user feed-
back. Many options are possible for this ini-
tial hand-coded structure, and different experts
would produce different conceptualizations; we
might want a measure of which basic conceptu-
alization tends to produce representations which
best fit the distribution of terms in the SEP. More
ambitiously, if we allow the answer set program
to use disjunctive branching rules with regards
to instantiation (thus creating multiple candidate
ontologies from a single set of input), we could
produce a large space of possible ontologies con-
sistent with user feedback and a general theory of
ontologies; the task would then be to rank these
candidates according to their suitability for our
metadata goals. Again, a precise evaluation met-
ric which could be used to select the “best” on-
tology from this space is needed.

Another question concerns the amount of ex-
pert feedback needed before we begin to see di-
minishing returns. For example, we can only col-
lect a limited amount of feedback from volunteer
SEP authors and editors before the task becomes

onerous; as such, we want to prioritize the collec-
tion of feedback for areas of the ontology which
are currently underpopulated, or even pay some
domain experts to address such sparseness. To
optimize efficiency, we would want to estimate the
number of feedback facts that are needed to reach
a relatively stable structure in that area.

Finally, given that philosophy is an evolving
domain rich with controversies, we might wonder
how much our evolving representation of that do-
main captures these debates as they unfold. One
of the alluring applications of dynamic ontology is
to archive versions of the ontology over time and
study the evolution of a discipline as it unfolds.
This is doubly-relevant to our project, as both our
domain corpus (the asynchronously-edited SEP)
and our subject discipline are constantly evolv-
ing. The study of this controversy and the evolu-
tion resulting from it could be greatly enhanced
by using metrics to precisely characterize change
across multiple archived versions of the ontology.

4 OUR SCORES

By stressing the dynamic nature of philoso-
phy, we do not mean to imply that the sciences
lack controversy, or that scientific ontologies do
not need ways of managing change. Nevertheless,
whereas the sciences typically aim for empirically-
grounded consensus, the humanities often encour-
age interpretation, reinterpretation, and plural-
istic viewpoints. In this context, the construc-
tion of computational ontologies takes on a social
character that makes an agreed-upon gold stan-
dard unlikely, and makes individual variation of
opinion between experts a permanent feature of
the context in which ontology evaluation takes
place. Because of the dynamic, social nature of
the domain, we do not try to achieve maximal
correctness or stability of the InPhO’s taxonomy
of philosophical concepts in one step. But by it-
eratively gathering feedback, and improving the
measures by which the ontology fit to various cor-
pora can be assessed, we can hope to quantify
the extent to which a stable representation can
be constructed despite controversy among users.
Our volatility score is designed to provide such a
measure.

Many approaches to ontology evaluation, such
as our volatility score, focus solely on syntactic
(formal) properties of ontologies. These methods
provide important techniques for assessing the
quality of an ontology and its suitability for com-



putational applications, but stable, well-formed
syntax is no guarantee that semantic features of
the domain have been accurately captured by the
formalism. By using the SEP as a proxy for the
domain of philosophy, our violation score exploits
a large source of semantic information to provide
an additional estimate as to how well the formal
features of our ontology correspond to the rich
source material of the SEP.

4.1 Volatility Score

Most generally, a volatility score provides a mea-
sure of the amount of change between two or more
different versions of a populated ontology.3 Such
a metric can serve a number of different purposes,
including controversy assessment and stability as-
sessment for a proposed methodology. As men-
tioned earlier, the ever-changing copora and do-
mains modeled by a dynamic ontology are riddled
with controversy. By comparing the changes be-
tween multiple archived versions of a populated
ontology through a “directed volatility” score, we
are able to track the evolution of a knowledge
base over time. At the same time, we expect a
proposed methodology to handle inconsistencies
gracefully. By using random samples of expert
feedback, we are able to test a ruleset variation’s
stability through a “grab-bag volatility” score.
By adjusting the size of these random samples,
we can also use this measure to determine how
much feedback to solicit before reaching a point
of diminishing returns with regards to stability.

While “volatility” represents a family of re-
lated methods, they all share the same basic in-
tuition that some value is added to the aggregate
volatility score each time the method “changes its
mind” about asserting some particular link in the
ontology (e.g. an instance switches from being as-
serted to not asserted under some class). For ex-
ample, consider the representation of controversy
over time: if behaviorism is said to be highly re-
lated to philosophy of language but a handful of
expert evaluations indicate otherwise, our model
would “change its mind” about asserting a link
between behaviorism and philosophy of language.
As other experts choose sides and weigh in on
the matter, the volatility continues to increase,
further pointing to an area of conflict. To con-
sider another application, volatility can be used
to indicate how much feedback is needed to reach
stability for some area of the ontology by taking

3We thank Uri Nodelman for early discussion of
this idea.

random subsets of feedback facts, and assessing
the amount of volatility between ontologies gen-
erated from those random subsets. By increas-
ing the size of the subset, we then see how much
impact new feedback is having. Once we reach
an acceptably low threshold for volatility, we can
decide that collecting more feedback is not worth
the effort and cost.

4.1.1 Assumptions & Requirements

Volatility measures the structural stability of a
set of ontologies or (derivatively) an ontology
population method. Many in the semantic web
community hold that domain ontologies are sup-
posed to be authoritative descriptions of the types
of entites in a domain (Smith, 2003). However,
ontology development is often an iterative process
(Noy and McGuinness, 2001), especially in dy-
namic ontology. The volatility score carries with
it this assumption that a “final answer” descrip-
tion will not respond to the metadata needs of a
dynamic corpus such as the SEP, Wikipedia, or
WordNet. Additionally, a domain can undergo
wide paradigm shifts, dramatically changing its
conceptual landscape (Kuhn, 1962). The advent
of new theories like quantum mechanics or new
technologies like computers, for example, radi-
cally reshaped the conceptual landscape of philos-
ophy. Therefore, the volatility score must be eval-
uated by domain experts to determine whether
instability is due to undesirable errors/omissions
in feedback or the machine reasoning program,
or whether it instead properly highlights ongo-
ing controversy within the field. In the former
case, changes to the ontology extension methods
can be made and evaluated against the old mea-
sure using the violation score. In the latter, these
highlighted areas of controversy could be used
to inform research in the field. In the case of
the InPhO project, this could help facilitate ana-
lytic metaphilosophy (see Section 6.1 of Buckner,
Niepert, and Allen (2010)).

4.1.2 Formalization

There are two subfamilies of volatility scores.
One is the “directed volatility” which assesses
the number of times an instance flips from be-
ing asserted to not asserted given an ordered set
of ontologies. “Directed volatility” can be used to
examine archived versions of an ontology and pro-
vide feedback about ontology extension methods.
However, these directed measures will not be use-
ful in calculating the amount of feedback needed



for the domain representation to reach some de-
sired threshold of stability, as any ordering of pop-
ulated ontologies derived from n random samples
of z feedback facts would be entirely arbitrary.
Thus we want a measure which does not require
the ontologies to be ordered, but rather provides
an estimate of how volatile that whole set is when
mutually compared.

One way to achieve this is to consider the set of
feedback facts not as a single entity which evolves
over time, but rather as a supply of materials that
can be used to populate an ontology. In a similar
manner, we conceive of the populated ontology
not as a whole representation, but as a bag of
inferred instances. We then assess, for a set of
n ontologies generated from random samples of z
feedback facts and any pair of terms P and Q, the
relative proportion of times instance of(P,Q) is
asserted vs. non-asserted. Thus, for any two
terms P andQ, the basic formula for assessing the
contribution of that pair to the overall volatility
score is

v(P,Q) = 1−
|x− n

2 |
n
2

(5)

where x is the number of times that the
instance of(P,Q) is asserted in the set under
consideration. The total volatility is given by

volatility(z) =
1

count(P,Q)

∑
∀P,Q

v(P,Q) (6)

However, a complication is introduced here
in that there are different etiologies which could
lead instance of(P,Q) to switch from being
asserted/non-asserted. One way is for there to
be a lack of any feedback facts relevant to that
instance which could lead to the assertion of an
instance of relation; another is due to the resolu-
tion of an inconsistency in feedback facts (e.g. in
one ontology a connection is asserted between P
and Q due to a user’s feedback, but not asserted
in another because of contrary feedback from an-
other user with a higher level of expertise). In
order to isolate these issues, we adopt a “conser-
vative” approach to assessing volatility: for any
given pair of terms, we will only assess a volatil-
ity contribution across the subset of ontologies
where at least minimal raw materials are present
for asserting an instance of relationship (e.g.,
more specific(P,Q) and highly related(P,Q)).
(It follows from this that no violation is assessed
for pairs of terms which never have the raw mate-
rials for assertion across those random subsets of

feedback.) We should still want to normalize this
measure for the whole set of generated ontologies,
because we would want to count an instance of
fact asserted 25 times out of 50 relevant ontologies
(i.e. ontologies generated from the relevant raw
materials) as more volatile than a instance of
fact which shifted 10 times out of 20 relevant on-
tologies (out of the 50 total generated). In this
case, the equation is modified to

v′(P,Q) = 1−
|x− m

2 |
m
2

m

n
(7)

which reduces to

v′(P,Q) = 1−
|x− m

2 |
n
2

(8)

and gives the sum volatility of

volatility(z) =
1

count(P,Q)

∑
∀P,Q

v′(P,Q) (9)

where m is the number of ontologies possessing
raw materials for a possible feedback assertion,
and n is the total number of ontologies generated
for random sampling of z feedback facts.

4.1.3 Interpretation of Results

Depending upon the modeler’s goals and assump-
tions about the domain, the volatility metric can
be displayed in different ways and given different
interpretations. Suppose, for example, that we
want to visualize an unfolding controversy in the
discipline. We may take some set of archived on-
tologies from the temporal beginning and ending
of the controversy, and superimpose the volatility
heat-maps for each pairwise volatility compari-
son between a time slice of the ontology and its
temporal successor, coloring areas of change, per-
haps gradually fading from one color to another
as time goes on. “Hotter” areas of the visualiza-
tion indicate areas of more persistent controversy,
and the color shade indicates the trajectory of the
dialectic over time. This would allow an expert
to visualize the evolution of a controversy and its
effects rather effectively in a quick display.

Suppose instead that our goal was to deter-
mine the amount of feedback needed for compre-
hensive and authoritative coverage of an area of
our ontology. In that case, the volatility metric
would be summed as indicated above for random
samples of z feedback facts, and the net result
would provide a volatility estimate for z facts that



could be compared to measures for other num-
bers of feedback facts or a predetermined thresh-
old. In this case, volatility indicates not contro-
versy, but rather the stability of the represen-
tation given that number of feedback facts, as
well as how likely that representation is to change
with the addition of more. Furthermore, we could
look not just at the aggregate sum of individ-
ual pair volatilities, but rather display those on
a heat map again. “Hotter” areas on this visual-
ization might indicate areas which require more
comprehensive or authoritative expert feedback,
and thus could be used to direct the feedback so-
licitation process towards areas where it is most
needed.

4.1.4 Preliminary Results

While we do not currently have enough feedback
facts to reliably estimate the amount of feedback
needed to achieve diminishing returns, we have
tested the measure by taking random samples of z
= 2000, 4000, 6000, and 8000 feedback facts, con-
firming that volatility does indeed decrease with
increasing amounts of feedback even for our small
data set. A problem for small data sets, however,
is that the formalization of “grab-bag” volatility
above depends upon the idealization that one can
draw y non-overlapping random samples of z feed-
back facts from the whole population of possible
feedback. Our current feedback consists of n =
8006 feedback facts. This is severely limiting to
the type of evaluation we can presently do: At z
= 2000, we can only take four samples without
overlap. As z approaches n, the probability that
the very same feedback facts will be chosen at
each random sample increases exponentially (and
thus exponentially reduces the volatility metric).
While there are several possible methods to con-
trol for this confound, we require a much larger
sample of feedback facts from which to draw our
random samples. Further ideas as to how to deal
with this confound are described in the Future
Work section below.

4.2 Violation Score

For a candidate taxonomy, we introduce a “vio-
lation score” that is computed by assessing the
degree to which its relative placement of terms
diverges from statistically generated expectations
about those terms relative locations in semantic
space (as estimated by their corpus-derived sim-
ilarity and relative generality measures). Similar

to Dellschaft and Staab (2008), we consider vio-
lation on both a local and the global level. For
local violations we only look at parent-child tax-
onomic relations. For the global violations, we
look at the weighted pathwise distance between
two terms in a taxonomy.

4.2.1 Assumptions & Requirements

One goal of ontology design is to produce a repre-
sentation which captures the semantic structure
of a domain. In order to have a concrete standard
for evaluation, the violation score uses the distri-
bution of terms in corpus, e.g. a reference work
in that domain, as a proxy for the domain itself.
Evaluation may thus draw upon the statistical
measures outlined in Section 3.2.2. However, any
metric relating an ontology’s taxonomic relations
to statistical measures carries with it implicit as-
sumptions regarding the semantic interpretation
of the ontology’s structural properties, such as
the interpretation of edges, pathwise distance, or
genealogical depth. In order for the representa-
tion to be useful in end user applications (such
as visualization, semantic search, and ontology-
guided conceptual navigation), we consider sev-
eral approaches to interpreting ontological struc-
ture, which may be adopted with varying degrees
of strength:

• Topic neutrality – One might simply wish
to regiment all of the vocabulary in a com-
mon structure representing only the isa rela-
tionships that exist among the various terms.
The goal of such a taxonomy is simply to en-
force a hierarchical structure on all the terms
in the language. According to this approach,
there is no implied semantic significance to
the node depth (aka, genealogical depth) or
to path length between pairs of nodes beyond
the hierarchical semantics of the isa relation
itself. For example, if English contains more
levels of classificatory terms for familiar ani-
mals than it does for relatively unfamiliar or-
ganisms, a term such as “dog” may sit at a
greater depth in the taxonomy from the root
node than terms for other organisms that are
similarly specific, but nothing of any seman-
tic significance is implied by this depth (or
the distance between term nodes) beyond the
existence of the intervening terms in the lan-
guage.

• Depth as generality – One might desire
that all sibling nodes have approximately the
same level of generality in the target domain,



making node depth (distance from the root
node) semantically significant. On this view,
the terms dog (a species) and feline (a family)
should not be at the same depth, even if the
language of the domain or corpus contains the
same number of lexical concepts between dog
and thing as between feline and thing. Here
one expects the entropy of terms at the same
depth to be highly correlated.4

• Leaf specificity – One might desire that all
leaf nodes in the structure represent approx-
imately the same grain of analysis. On this
view, regardless of node depth, leaves should
have similar entropy. Thus, for example, if
hammerhead shark and golden retriever are
both leaf nodes, leaf specificity is violated
if these terms are not similarly distributed
across the corpus that is standing proxy for
the domain.

Choices among these desiderata are central to
any argument for edge-based taxonomic evalua-
tion. This is especially true for gold standard
approaches which implicitly hold the relations
of two candidate ontologies to be semantically
equivalent. Additionally, we suspect that most
domains have asymmetric taxonomic structures:
subtrees of sibling nodes are not typically isomor-
phic to one another, and this means that even
within a given taxonomy, path length between
nodes and node depth may not have the same
semantic significance.

In our comparison methods we assume that
node depth is topic neutral – that is, node depth
bears little correlation to specificity or general-
ity on a global level. However, by definition, a
child node should be more specific than its par-
ent node. Thus, we measure local violation by
comparing the information content of the parent
and child nodes. When two terms are reversed in
specificity we can count this as a syntactic viola-
tion of the taxonomic structure. Additionally, we
can expect sibling instances to be closely related
to one another and to their parent node by statis-
tical measures of semantic distance. An instance
is in violation if it is an outlier compared to the
rest of its siblings.

4Edge equality provides a special case of depth as
generality. The latter requires only that all edges at
a given level represent the same semantic distance,
whereas edge equality also requires these distances to
be consistent between the different levels (e.g., the
movement from a species to a genus represents the
same conceptual distance as that between an order
and a class).

We propose that overall violation is an emer-
gent property from these localized semantic viola-
tions. These violations are each weighted by the
magnitude of the error, ensuring that an ontol-
ogy with several large mistakes will have greater
violation than one with many minute errors.

4.2.2 Formalization

A generality violation (g-violation) occurs when
two terms are reversed in specificity (e.g., the
statistics propose that connectionism is more spe-
cific than cognitive science but the answer set as-
serts that cognitive science is more specific). For
two terms S and G, where S is more specific than
G, we hypothesize that the conditional entropy
will be higher for for G given S than for S given
G.

H(G | S) > H(S | G) (10)

This makes intuitive sense if one considers the
terms dog (S) and mammal (G). The presence
of the term dog will lend far more certainty to
the appearance of mammal than the other way
around -- mentioning mammal is not very pre-
dictive of dog.

If this inequality does not hold, we take this
as a generality violation (g-violation):

gv(S,G) = H(S | G)−H(G | S) (11)

The mean of the g-violations is then taken to
give the overall g-violation.

violationg(O) =
1

count(S,G)

∑
∀S,G

gv(S,G) (12)

A similarity violation (s-violation) occurs
when an instance’s semantic similarity to its par-
ent class is an outlier compared to the rest of its
siblings. For example, the entity (ideas about)
federalism has been observed under both (ideas
about) social and political philosophy and (ideas
about) forms of government. However, the sib-
lings of federalism under forms of government
are much closer to their parent node, than those
under social and political philosophy. Therefore,
a taxonomy asserting that federalism is an in-
stance of social and political philosophy will re-
cieve higher violation than one in which federal-
ism is an instance of forms of government.

Semantic similarity can be measured using a
variety of measures reviewed in Jiang and Con-
rath (1997) and Resnik (1999). We use the mea-
sure presented in Lin (1998):



sim(x1, x2) =
2× logP (C)

logP (x1) + logP (x2)
(13)

Such that x1 and x2 are entities in the taxon-
omy, and C is the most specific class which sub-
sumes x1 and x2. As we are simply comparing an
instance S to its parent G, we can use:

sim(S,G) =
2× logP (G)

logP (S) + logP (G)
(14)

The degree of s-violation can be determined by
the standard score, which normalizes the values
by standard deviation:

sv(S,G) =
sim(S,G)− µ

σ
(15)

where x is the raw semantic distance, µ is the
mean of the semantic distance to the parent of all
sibling nodes and σ is the standard deviation of
this population. The final s-violation is calculated
as the mean of s-violations.

violations(O) =
1

count(S,G)

∑
∀S,G

sv(S,G) (16)

4.2.3 Interpretation of Results

The violation score is intended as way to select
the best representation of a given set of input
parameters. In our methodology, the violation
score is used to test variations in ruleset changes
or seed taxonomies. This evaluation can be used
throughout the ontology design process to perfect
methodology. We have used violation to exam-
ine changes to the assertion of semantic crosslinks
and in the weighting of expert feedback obtained
from novice philosophers, undergraduate majors,
graduate students, and professors of philosophy.

Additionally, we are able to use the violation
score to compare different samples of expert feed-
back by using the same seed taxonomy and rule-
set. The changes in violation scores exposed a
steady increase in taxonomic fit from novices to
undergraduates to graduate students, before a
slight decrease with professors. Further investi-
gation of violations found that our highest-level
experts were more likely to go against the sta-
tistical prediction in often useful ways, further
justifying the solicitation of feedback. Note that
this starkly illustrates the limits of this method
of corpus-based ontology validation: in this case,
we solicited expert feedback precisely because we

regarded the co-occurrence statistics as less than
perfectly reliable, and in general the judgments
of experts are regarded as more trustworthy than
the evaluation metrics generated from those co-
occurrence statistics. As such, we would obvi-
ously not infer that the ontology generated from
the inclusion of expert feedback is less desirable
than that without. In general, one should keep in
mind during evaluation that one should not evalu-
ate representations generated using one source of
data against evaluation metrics generated using
another, less-trusted source of data. In practice,
this complicates even comparisons between differ-
ent versions of the ruleset, for we must carefully
reason through whether some particular ruleset
change could be subtly biasing the representa-
tion towards or against expert feedback (e.g., in
the way it settles inconsistency between users and
experts).

4.2.4 Experimental Results

Since deploying the initial version of our answer
set program (described in Niepert et al. 2008), we
discovered a number of possible improvements,
but could not be sure a priori which version of
the ruleset would produce better results. The vi-
olation score provides us with a way to compare
these options in terms of their suitability. We
identified three binary parameters along which
our program can vary, and have compared the vi-
olation scores for each possible combination (re-
sulting in a 2x2x2 matrix). The three parame-
ters are briefly described under their abbreviated
names below.

• “plink” – Our original ruleset (Niepert et al.
2008) included non-taxonomic “links” to allow
reachability between entities which were se-
mantically related but which, for various rea-
sons, could not be connected taxonomically.
To minimize unnecessary taxonomic relations,
we added a rule (hereafter, the “nins” rule)
which blocked an instance X from being as-
serted as an instance of a class Y if there was
also evidence that X was an instance of class
Z and Y was possibly linked (“plink”ed) to Z
(since in that case X would already be reach-
able from Y via the Y → Z link). Unex-
pectedly, we found that this occasionally pro-
duced an undesirable “reciprocal plink dead-
lock” (see Figure 2): whenever links were pos-
sible from both Y → Z and Z → Y , the nins
rule blocked X from being inferred as an in-
stance of either Y or Z (and thus X often



became a taxonomic “orphan”). As such, we
created a second version of the program which
added a “no plink” restriction to the “nins”
rule, preventing this reciprocal plink situa-
tion. The “plink” parameter indicates that
this restriction was added to the nins rule.

Figure 2: The reciprocal plink problem

• “voting” – An important innovation of our
project involves the stratification of user feed-
back into different levels of self-reported ex-
pertise and using this information in a two-
step process to resolve feedback inconsisten-
cies. The first step in this process involves
the application of a “voting filter” which set-
tles intra-strata feedback inconsistencies us-
ing a voting scheme and can be completed
as a preprocessing step before the answer set
program is run (as described in Niepert et al
2009). The “voting” parameter indicates that
this filter was run.

• “trans” – Much of the information on which
our program operates is derived from the tran-
sitivity of the “more general than”/“more spe-
cific than” feedback predicates. The second
step of our method for settling feedback in-
consistencies involves settling inter -strata in-
consistencies, which is completed from within
our ruleset. However, transitivities in feed-
back can be computed either before or after
these inter-strata inconsistencies are resolved
(the former resulting in many more inconsis-
tencies requiring resolution). The “trans” pa-
rameter thus indicates that this version of the
ruleset computes transitivities before (vs. af-
ter) our ruleset settles inter-strata inconsis-
tencies.

Each modification was then compared to the
current ruleset using both the s-violation and g-
violation metrics using corpus statistics and user
evaluations from July 24, 2010 (see Figure 3).
The number of instances asserted is also included.
As we can clearly see, every proposed change de-
creased both violation scores, with the best re-
sults provided by adopting all three changes5.

5g-violation was lowest when adopting the plink
and voting changes, but not trans. However, the re-
sult with all three changes was second lowest.

The decrease in s-violation can be interpreted
as the development of denser semantic clusters
subsumed under each class. The decrease in g-
violation can be interpreted as movement towards
greater stratification in the heirarchy. This is
quantitative evidence that the principled design
choices outlined above will provide useful addi-
tions to the ontology enrichment process.

5 FUTURE WORK

With these methods of evaluating ontology struc-
ture and function in hand, along with prelimi-
nary results on our limrited feedback collection,
we propose to continue these evaluation experi-
ments as new feedback is rapidly collected from
SEP authors. These scores will allow us to pursue
a long-desired use of our answer set programming
to infer a space of populated ontologies and select
an optimal one by ranking them according to vi-
olation scores. We can then see how consistent
ruleset selection is.

We might also ask how feedback from peo-
ple with different levels of expertise in philoso-
phy affects the placement of terms in the InPhO.
For instance, Eckart et al (2010) have already
gathered feedback data from Amazon Mechanical
Turk (AMT) users and compared their responses
to those of experts. Although we know that as
a whole they differ statistically from experts, we
do not yet know how much this matters to the
structure that is eventually produced from those
feedback facts.

As for the confound of overlapping samples
in the calculation of “grab-bag” volatility (see
section 4.1.4), an ideal solution is to solicit
more feedback, increasing the amount of non-
overlapping samples of a size z. Collecting gen-
eralized feedback from lower levels of expertise is
economically feasible using AMT. Additionally,
we can isolate small sections of the ontology to
gather a very large amount of expert feedback
from SEP authors in order to determine the point
of diminishing returns for that location and ex-
trapolate that result to estimate the amount of
feedback required for other sections.

Finally, the InPhO has daily archives of its
populated ontologies from October 23, 2008 to
the present (July 25, 2010). By using the volatil-
ity measure on this data set, we should gain in-
sights into our own ability to capture controversy
and convergence within a field and be able to
present that to philosophers through the visual-



s-violation g-violation instances
all-in voting all-in voting all-in voting

current 0.8248 0.8214 -0.1125 -0.1170 417 456
plink 0.8111 0.8089 -0.1182 -0.1227 521 568
trans 0.8119 0.8094 -0.1133 -0.1168 452 491

plink, trans 0.8061 0.8031 -0.1153 -0.1188 502 546

Figure 3: Violation score evaluations on the InPhO using
feedback and corpus statistics from July 24, 2010

izations described in Section 4.1.3.

6 CONCLUSIONS

In this paper we have proposed two methods for
evaluating the structural and functional aspects
of a corpus-based dynamic ontology. Our work
focuses on the semantic evaluation of taxonomic
relations, rather than the lexical evaluation un-
dertaken by Brewster et al. (2004) and Dellschaft
& Staab (2008). The violation score gives us a
concrete measure of how well an ontology cap-
tures the semantic similarity and generality re-
lationships in a domain by examining statistical
measures on an underlying corpus. The volatil-
ity score exposes areas of high uncertainty within
a particular ontology population method, which
can be used for many purposes. Directed mea-
sures of volatility can indicate the evolution of
a knowledge base and highlight areas of contro-
versy. Non-directed measures can indicate the
stability of a ruleset variation by using random
samples of expert feedback. This can also esti-
mate the amount of expert feedback required for
a convergent representation. We also have exam-
ined the considerations necessary to examine a
taxonomy, and demonstrated how these methods
have been used to enhance the enrichment pro-
cess of the Indiana Philosophy Ontology Project
through experiments on ruleset variations, expert
feedback stratification and stability.
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